Study on Regularities of Polyethylene Waste Low-Temperature Pyrolysis

: pp. 923 - 928
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University

A low-temperature pyrolysis with pyrocondensate as a target product is one of the options for processing polyethylene waste. The fractional composition and properties of the pyrocondensate obtained at different temperatures and times were studied. Pyrocondensate was separated into gasoline, diesel fractions, and the residue. The composition and properties of mentioned fractions were established and related to the conditions of the pyrolysis process. X-ray fluorescence analysis of pyrocondensate and narrow fractions isolated from it was carried out.

  1. Hamad, K.; Kaseem, M.; Deri, F. Recycling of Waste from Polymer Materials: An Overview of the Recent Works. Polym. Degrad. Stab. 2013, 98, 2801-2812.
  2. Ali, S.H.; Garforth, A.A.; Harris, D.H.; Rawlence, D.J.; Uemichi, Y. Polymer Waste Recycling Over “Used” Catalysts. Catal. Today 2002, 75, 247-255.
  3. Sheldon, R.A.; Norton, M. Green Chemistry and the Plastic Pollution Challenge: Towards a Circular Economy. Green Chem. 2020, 22, 6310-6322. doi:
  4. Su, L.; Xiong, X.; Zhang, Y.; Wu, C.; Xu, X.; Sun, C.; Shi, H. Global Transportation of Plastics and Microplastics: A Critical Review of Pathways and Influences. Sci. Total Environ. 2022, 831, 154884.
  5. Datta, J.; Kopczyńska, P. From Polymer Waste to Potential Main Industrial Products: Actual State of Recycling and Recovering. Crit. Rev. Environ. Sci. Technol. 2016, 46, 905-946.
  6. Kemona, A.; Piotrowska, M. Polyurethane Recycling and Disposal: Methods and Prospects. Polymers 2020, 2, 1752.
  7. Al-Maaded, M., Madi, N.K., Kahraman, R., Hodzic, A.; Ozerkan, N.G. An Overview of Solid Waste Management and Plastic Recycling in Qatar. J. Polym. Environ. 2012, 20,186-194.
  8. Panda, A.K.; Singh, R.K.; Mishra, D.K. Thermolysis of Waste Plastics to Liquid Fuel: A Suitable Method for Plastic Waste Management and Manufacture of Value Added Products—A World Prospective. Renew. Sustain. Energy Rev. 2010, 14, 233-248.
  9. Bratychak, M.M.; Hrynyshyn, O.B.; Prysyazhnyy, Yu.V.; Pushak, A.P. Naftopolimerni smoly iz funktsiy nymy hrupamy. Syntez vlastyvosti, zastosuvannya; Publishing House of Lviv Polytechnic National University: Lviv, 2016.
  10. Bratychak, M.; Brostow, W.; Grynyshyn, O.; Shyshchak, O. Synthesis and Characterization of Petroleum Resins with Epoxy Groups. Mater. Res. Innov. 2003, 7, 167-171.
  11. Skibitskiy, V.; Grynyshyn, O.; Bratychak, M.; Waclawek, W. Obtaining of Petroleum Resins Using Pyrolysis By-Products. 4. Resins with Carboxy Groups. Ecol. Chem. Eng. 2004, 11, 41-51.
  12. Bratychak, M.; Grynyshyn, O.; Shyshchak, O.; Romashko, I.; Waclawek, W. Obtaining of Petroleum Resins Using Pyrolysis By-Products. 12. Petroleum Resins with Hydroxyl Groups. Ecol. Chem. Eng. 2007, 14, 225-234.
  13. Bratychak, M.; Shust, O.; Chervinskyy, T.; Shyshchak, O.; Waclawek, W. Obtaining of Petroleum Resins Using Pyrolysis By-Products. 14. Petroleum Resins with Fluorine Atoms. Ecol. Chem. Eng. 2011, 18, 49-54.
  14. Chervinskyy, T.; Bratychak, M.; Gagin, M.; Waclawek, W. Obtaining of Petroleum Resins Using Pyrolysis By-Products. 6. Petroleum Resins with Epoxy Groups as Active Components of Epoxy-Polymeric Composites. Ecol. Chem. Eng. 2004, 11, 1225-1231.
  15. Grynyshyn, O.; Bratychak, M.; Krynytskiy, V.; Donchak, V. Petroleum Resins for Bitumens Modification. Chem. Chem. Technol., 2008, 2, 47-53.
  16. Pyshyev, S.; Lypko, Y.; Chervinskyy, T.; Fedevych, O.; Kułażyński, M.; Pstrowska, K. Application of Tyre Derived Pyrolysis Oil as a Fuel Component. S. Afr. J. Chem. Eng. 2023, 43, 342-347.
  17. Ryzhkov, S.; Rudyuk, N.; Markina, L. Research of Thermal Conductivity of the Condensed Mass of the Whole Waste Tires and Determination of their Optimum Arrangement in the Pyrolysis Reactor. EasternEuropean J. Enterp. Technol. 2016, 82, 12-18.
  18. Hrynyshyn, K.; Skorokhoda, V.; Chervinskyy, T. Study on the Composition and Properties of Pyrolysis Pyrocondensate of Used Tires. Chem. Chem. Technol. 2022, 16, 159-163.
  19. Mikulionok, I. A State of Art and Prospects of Plastic Solid Waste Management. Energy Technologies & Resource Saving 2021, 2, 52-73.
  20. Phakedi, D.; Ude, A.U.; Oladijo, P.O. Co-pyrolysis of Polymer Waste and Carbon-Based Matter as an Alternative for Waste Management in the Developing World. J. Anal. Appl. Pyrolysis 2021, 155, 105077.
  21. Jung, S.; Choi, D.; Park, Y.-K.; Tsang, Y.F.; Klinghoffer, N.B.; Kim, K.-H.; Kwon, E.E. Functional Use of CO2 for Environmentally Benign Production of Hydrogen Through Catalytic Pyrolysis of Polymeric Waste. Chem. Eng. J. 2020, 399, 125889.
  22. Srinivasan, S.; Valsadwala, A.S.; Begum, S.S.; Samui, A.B. Experimental Investigation on the Influence of Novel Catalyst in Co-Pyrolysis of Polymeric Waste: Characterization of Oil and Preparation of Char Reinforced Composites. J. Clean. Prod. 2021, 316, 128225.
  23. Zhang, L.; Bao, Z.; Xia, S.; Lu, Q.; Walters, K.B. Catalytic Pyrolysis of Biomass and Polymer Wastes. Catalysts 2018, 8, 659.
  24. Topilnytskyy, P.; Grynyshyn, O.; Machynskyy, O. Tehnologia pervynnoi pererobky nafty i gazu. Publishing House of Lviv Polytechnic National University: Lviv, 2014.