Amphiphilic cholesterol containing polymers for drug delivery systems

2016;
: pp. 560 – 570
Authors: 

Zoriana Demchuk, Mariya Savka, Andriy Voronov, Olga Budishevska, Volodymyr Donchak and Stanislav Voronov

Zoriana Demchuk-1, Mariya Savka-1, Andriy Voronov-2, Olga Budishevska-1, Volodymyr Donchak-1 and Stanislav Voronov-1

  1. Lviv Polytechnic National University 12, S. Bandery St., 79013 Lviv, Ukraine; Stanislav.voronov@gmail.com
  2. North Dakota State University 1735 NDSU Research Park Dr., Fargo, ND, 58102, USA

The interaction of binary copolymers poly(maleic anhydride-co-poly(ethylene glycol) methyl ether methacrylate) with cholesterol results in formation of cholesterol containing polymers, which contain from 4.6 to 46.0 mol % monocholesteryl maleic links. Their structure was confirmed using functional analysis and IR spectroscopy. Acidic and anhydride links of these copolymers form polymeric salts if react with alkali. These salts are surfactants which in aqueous medium form a hierarchy micelles and micellar aggregates depending on the copolymer concentration. Using conductometry it was found that preferably monomolecular micelles are formed in dilute solutions, and micellar aggregates begin to form at higher concentrations. In aqueous media polymeric salts are able to solubilize such lipophilic substances as Sudan III dye and anticancer drug curcumin. Efficiency of solubilization towards Sudan III grows if the content of monocholesteryl maleic fragment in surfactant increases.

[1] Bergstrand N.: Doctoral thesis. Swedish Uppsala University, Bergstrand 2003.
[2] Lee A., Venkataraman S., Sirat S. et al.: Biomaterials, 2012, 33, 1921.
[3] Yu J., Li Y., Qiu L. et al.: J. Pharm. Pharmaco, 2009, 61, 713.
[4] Khomenko O., Budishevska O., Voronov A. et al.: Int. J. Theor. Appl. Nanotechnol., 2013, 1, 17.
[5] Huh K., Min H., Lee S. et al.: J. Control. Release, 2008, 126, 122.
[6] Konno T., Watanabe J. and Ishihara K.: J. Biomed. Mat. Res., 2002, 65A, 210.
[7] Kim S., Kim D., Shim Y. et al.: J. Control. Release, 2001, 72, 191.
[8] Desai N., Trieu V., Hwang L. et al.: Anti-Cancer Drugs, 2008, 19, 899.
[9] Wu J., Liu Q. and Lee R.: Int. J. Pharm., 2006, 316, 148.
[10] Lindman B. and Alexandridis P.: Amphiphilic Block Copolymer. Elsevier, Amsterdam 2000.
[11] Hamley I.: Block Copolymers in Solution. John Wiley and Sons, NY 2005.
[12] Ringsdorf H., Schlarb B. and Venzmer J.: Angew. Chem. Int. Ed., 1988, 27, 113.
[13] Zhou Y., Briand V., Sharma N. et al.: Materials, 2009, 2, 636.
[14] Shibaev V., Tal’roze R., Karakhanova F. and Plate N.: J. Polym. Sci., 1979, 17, 1671.
[15] Yamaguchi T. and Asada T.: Macromolecules, 1989, 22, 1141.
[16] Yusa S.: Int. J. Polym. Sci., 2012, 2012, 1.
[17] Knop K., Hoogenboom R., Fischer D. and Schubert U.: Angew. Chem. Int. Ed., 2010, 49, 6288.
[18] Yang Dan-boa, Zhu Jia-bi, Huang Zhang-jianet et al.: Colloid Surface B, 2008, 63, 192.
[19] Jia L., Cui D., Bignonet J. et al.: Biomacromolecules, 2014, May 6.
[20] Chi Thanh Nguyen, Thanh Huyen Tran, Xiuling Lubet et al.: Polym. Chem., 2014, 5, 2774.
[21] Bedu-Addo R., Tang P., Xu Y. and Huang L.: Pharmaceut. Res., 1996, 13, 718.
[22] Liu Y., Wang Y., Zhuang D. et al.: Colloid Interface Sci., 2012, 377, 197.
[23] Sevimli S., Inci F., Zareie H. and Bulmus V.: Biomacromolecules, 2012, 8, 3064.
[24] Kudina O., Tarnavchyk I., Khomenko O. et al.: J. Macromol. Chem. Phys., 2013, 214, 2671.
[25] Tarnavchyk I., Voronov A., Donchak V. et al.: Chem. Chem. Technol., 2016, 10, 159.
[26] Liu X., Pramoda K., Yang Y. et al.: J. Biomaterials, 2004, 25, 2619.
[27] Liu X., Yang Y., Leong K. et al.: J. Colloid Interface Sci., 2003, 266, 295.
[28] Chaw C., Chooi K., Liu X. et al.: J. Biomaterials, 2004, 25, 4297.
[29] Zeng H., Li Y., Zhang H. et al.: Acta Polym. Sinica, 2004, 3, 327.
[30] Soppimath K., Liu L., Seow W. et al.: Adv. Funct. Mater.б 2007, 17, 355.
[31] Xu J., Ji J. and Chen W.: Adv. Biomater., 2005, 288, 465.
[32] Chern C., Chiu H. and Chuang Y.: Polym. Int., 2004, 53, 420.
[33] Wang Y., Ke C., Beh C. et al.: Biomaterials, 2007, 28, 5358.
[34] Liu L., Guo K., Lu J. et al.: Biomaterials, 2008, 29, 1509.
[35] Wang Y., Wang Y., Li R. et al.: Chem. J. Chinese Univ., 2008, 29, 1065.
[36] Akiyoshi K., Nagai K., Nishikawa T. and Sunamoto J.: Chem. Lett., 1992, 21, 1727.
[37] Akiyoshi K., Deguchi S., Moriguchi N. et al.: Macromolecules, 1993, 26, 3062.
[38] Deguchi S., Akiyoshi K. and Sunamoto J.: Macromol. Rapid Commun., 1994, 15, 705.
[39] Nishikawa T., Akiyoshi K. and Sunamoto J.: Macromolecules, 1994, 27, 7654.
[40] Akiyoshi K., Deguchi S., Tajima H. et al.: Proceed. Japan Acad. B, 1995, 71, 15.
[41] Yusa S., Kamachi M. and Morishima Y.: Langmuir, 1998, 14, 6059.
[42] Yusa S., Hashidzume A. and Morishima Y.: Langmuir, 1999, 15, 8826.
[43] Yusa S., Kamachi M. and Morishima Y.: Macromolecules, 2000, 33, 1224.
[44] Stetsyshyn Y., Kostruba A., Harhay K. et al.: Appl. Surf. Sci., 2015, 347, 299.
[45] Waysberger A., Proskauer E., Riddik J. and Tups E.: Organicheskie Rastvoriteli. Inostr. lit., Moskva 1958.
[46] Toropceva A., Belgorodskaja C. and Bondarenko V.: Laboratornyi Practicum po Khimii i Techologii Vysokomolecularnykh Soedinenij. Khimiya, Moskva 1978.
[47] Baranova V., Bybyk E., Cogevnykova N. et al.: Practicum po Colloidnoi Khimii. Vysshaya shcola, Moskva 1983.
[48] ConjuchovV.: Polimery i Colloidnye Systemy. MGUP, Moskva 1999.
[49] Tarnavchyk I.,Voronov A., Donchak A. et al.: Chem. Chem. Technol., 2016, 10, 159.
[50] Budishevska O., Dronj I., Voronov A. et al.: React. Funct. Polym., 2009, 69, 785.
[51] Kudina O., Budishevska O., Voronov A. et al.: Macromol. Symp., 2010, 298, 100.
[52] Trivedi B. and Culberston B.: Maleic Anhydride. Plenum Press, NY 1982.
[53] Cargin V., Myrlyna S. and Antypyna A.: Vysokomol. Soed., 1959, 9, 1428.
[54] Kohut A.,Voronov A. and Voronov S.: Chem. Chem. Technol., 2013, 7, 261.
[55] Ali Reza A., Tehrani-Bagha and Holmberg K.: Materials, 2013, 6, 580.