This review focuses on amphiphilic diesters and "gemini" surfactants synthesized from pyromellitic acid, polyethylene glycols, aliphatic alcohols, and cholesterol. The discussion encompasses their unique colloidal and chemical properties, with an emphasis on the relationship between critical micelle concentration and hydrophilic-lipophilic balance. Structural factors, particularly the length of the lipophilic substituents, significantly influence CMC values in aqueous systems. Additionally, the presence of carboxyl groups in the pyromellitic acid core allows for pH-dependent modulation of surface activity. The amphiphiles exhibit exceptional potential in forming micellar structures capable of solubilizing hydrophobic substances, including dyes, oils, cholesterol, and the bioactive compound curcumin. Beyond enhancing the stability of these substances, they enable controlled release mechanisms that mimic cellular membrane interactions. Such versatility positions the materials from amphiphilic diesters of pyromellitic acid as promising candidates for innovative applications in targeted drug delivery systems and as nanoreactors for synthesizing silver nanoparticles. This review underscores their potential in advancing nanotechnology and biomedical engineering.
[1] Alkan, B.; Daglar, O.; Luleburgaz, S.; Gungor, B.; Gunay, U.S.; Hizal, G.; Tunca, U.; Durmaz, H. One-Pot Cascade Polycondensation and Passerini Three-Component Reactions for the Synthesis of Functional Polyesters. Polym. Chem. 2022, 13, 258–266. https://doi.org/10.1039/D1PY01528A
[2] Koziel, K.; Lagiewka, J.; Girek, B.; Folentarska, A.; Girek, T.; Ciesielski, W. Synthesis of New Amino-β-Cyclodextrin Polymer, Cross-Linked with Pyromellitic Dianhydride and Their Use for the Synthesis of Polymeric Cyclodextrin Based Nanoparticles.Polymers 2021, 13, 1332. https://doi.org/10.3390/polym13081332
[3] Afinjuomo, F.; Barclay, T.; Song, Y.; Parikh, A.; Petrovsky, N.; Garg, S. Synthesis and Characterization of a Novel Inulin Hydrogel Crosslinked with Pyromellitic Dianhydride. React. Funct. Polym. 2019, 134, 104–111.https://doi.org/10.1016/j.reactfunctpolym.2018.10.014
[4] Arkas, M.; Vardavoulias, M.; Kythreoti, G.; Giannakoudakis, D.A. Dendritic Polymers in Tissue Engineering: Contributions of PAMAM, PPI PEG and PEI to Injury Restoration and Bioactive Scaffold Evolution. Pharmaceutics 2023, 15, 524. https://doi.org/10.3390/pharmaceutics15020524
[5] Polotti, G. Perspectives from Industry. Adv. Chem. Eng. 2020,56, 259–330. https://doi.org/10.1016/bs.ache.2020.07.003
[6] Ciesielska, A.; Ciesielski, W.; Girek, B.; Girek, T.; Koziel, K.; Kulawik, D.; Lagiewka, J. Biomedical Application of Cyclodextrin Polymers Cross-Linked via Dianhydrides of Carboxylic Acids. Appl. Sci. 2020, 10, 8463. https://doi.org/10.3390/app10238463
[7] Peimanfard, S.; Zarrabi, A.; Trotta, F.; Matencio, A.; Cecone, C.; Caldera, F. Developing Novel Hydroxypropyl-β-Cyclodextrin- Based Nanosponges as Carriers for Anticancer Hydrophobic Agents: Overcoming Limitations of Host–Guest Complexes in a Comparative Evaluation Pharmaceutics 2022, 14, 1059. https://doi.org/10.3390/pharmaceutics14051059
[8] Monfared, Y.K.; Mahmoudian M.; Cecone, C.; Caldera, F.; Zakeri-Milani, P.; Matencio, A.; Trotta, F. Stabilization and Anticancer Enhancing Activity of the Peptide Nisin by Cyclodextrin-Based Nanosponges against Colon and Breast Cancer Cells. Polymers 2022, 14, 594. https://doi.org/10.3390/polym14030594
[9] Girek, T.; Koziel, K.; Girek, B.; Ciesielski, W. CD Oxyanions as a Tool for Synthesis of Highly Anionic Cyclodextrin Polymers. Polymers 2020, 12, 2845. https://doi.org/10.3390/polym12122845
[10] Demasi, S.; Caser, M.; Caldera, F.; Dhakar, N.K.; Vidotto, F.; Trotta, F.; Scariot, V. Functionalized Dextrin-Based Nanosponges as Effective Carriers for the Herbicide Ailanthone. Ind. Crops Prod. 2021, 164, 113346. https://doi.org/10.1016/j.indcrop.2021.113346
[11] Qi, H.; Meng, L.; Lin, X.; Xu, W.; Chen, Y.; Zhang, C.; Qiu, Y. Anti-Wrinkle Finishing of Cotton Fabrics with Pyromellitic Acid Enhanced by Polyol Extenders. J. Donghua Univ. (Engl. Ed.) 2022, 39, 533–541. https://doi.org/10.19884/j.1672- 5220.202209006
[12] Tarnavchyk, I.; Voronov, A.; Donchak, V.; Budishevska, O.; Kudina, O.; Khomenko, O.; Harhay, K.; Samaryk, V.; Voronov, S. Synthesis and Selfassambling of Amphiphilic Oligoesters Based on Pyromellitic Acid. Chem. Chem. Technol. 2016, 10, 159–172. https://doi.org/10.23939/chcht10.02.159
[13] Müller, R.H. Colloidal Carriers for Controlled Drug delivery and Targeting: Modification, Characterization and in Vivo Distribution; CRC Press, 1991.
[14] Mishra, P.; Nayak, B.; Dey, R.K. PEGylation in Anti-Cancer Therapy: An Overview. Asian J. Pharm. Sci. 2016, 11, 337–348. https://doi.org/10.1016/j.ajps.2015.08.011
[15] Kudina, О.; Tarnavchyk, I.; Khomenko, О.; Budishevska, O.; Voronov, S.; Voronov, A. PEG and Cholesterol-Containing Pyromellitates: Synthesis and Self-Assembly. Macromol. Chem. Phys. 2013, 214, 2761–2767.https://doi.org/10.1002/macp.201300488
[16] Klok, H.-A.; Hwang, J.J.; Iyer, S.N.; Stupp, S.I. Cholesteryl-(L- Lactic Acid)n Building Blocks for Self-Assembling Biomaterials. Macromolecules 2002,35,746–759.https://doi.org/10.1021/ma010907x
[17] Heino, S.; Lusa, S.; Somerharju, P.; Ehnholm, C.; Olkkonen, V.M.; Ikonen, E. Dissecting the Role of the Golgi Complex and Lipid Rafts in Biosynthetic Transport of Cholesterol to the Cell Surface. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 8375–8380. https://doi.org/10.1073/pnas.140218797
[18] Klausen, T.K.; Hougaard, C.; Hoffmann, E.K.; Pedersen, S.F. Cholesterol Modulates the Molume-Regulated Anion Current in Ehrlich-Lettre Ascites Cells via Effects on Rho and F-Actin. Am. J. Physiol. Cell Physiol. 2006, 291, C757–C771. https://doi.org/10.1152/ajpcell.00029.2006
[19] Levitan, I.; Christian, A.E.; Tulenko, T.N.; Rothblat, G.H. Membrane Cholesterol Content Modulates Activation of Volume- Regulated Anion Current in Bovine Endothelial Cells. J. Gen.Physiol. 2000, 115, 405–416. https://doi.org/10.1085/jgp.115.4.405
[20] Maxfield, F.R.; Tabas, I. Role of Cholesterol and Lipid Organization in Disease. Nature 2005, 438, 612–621. https://doi.org/10.1038/nature04399
[21] Yusa, S. Self-Assembly of Cholesterol-Containing Water- Soluble Polymers. Int. J. Polym. Sci. 2012, 609767. https://doi.org/10.1155/2012/609767
[22] Ringsdorf, H.; Schlarb, B.; Venzmer, J. Molecular Architecture and Function of Polymeric Oriented Systems: Models for the Study of Organization, Surface Recognition, and Dynamics of Biomembranes. Angew. Chem. Int. Ed. 1988, 27, 113–158. https://doi.org/10.1002/anie.198801131
[23] Zhou, Y.; Briand, V.A.; Sharma, N.; Ahn, S.; Kasi, R.M. Polymers Comprising Cholesterol: Synthesis, Self-Assembly, and Applications. Materials 2009, 2, 636–660. https://doi.org/10.3390/ma2020636
[24] Shibaev, V.P.; Platé, N.A.; Freidzon, Ya.S. Thermotropic Liquid Crystalline Polymers. I. Cholesterol-Containing Polymers and Copolymers. J. Polym. Sci. Pol. Chem. 1979, 17, 1655–1670. https://doi.org/10.1002/pol.1979.170170609
[25] Shibaev, V.P.; Tal’roze, R.V.; Karakhanova, F.I.; Platé, N.A. Thermotropic Liquid Crystalline Polymers. II. Polymers with Amino Acid Fragments in the Side Chains. J. Polym. Sci. Pol.Chem. 1979, 17, 1671–1684.https://doi.org/10.1002/pol.1979.170170610
[26] Yamaguchi, T.; Asada, T.; Hayashi, H.; Nakamura, N. Dependence of the Packing Structure of Mesogenic Groups on the Flexible Spacer Length of Liquid-Crystalline Side-Chain Polymers. Macromolecules 1989, 22, 1141–1144. https://doi.org/10.1021/ma00193a024
[27] Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288–6308. https://doi.org/10.1002/anie.200902672
[28] Menger, F.M.; Littau, C.A. Gemini Surfactants: Synthesis and Properties. J. Am. Chem. Soc. 1991, 113, 1451–1452. https://doi.org/10.1021/ja00004a077
[29] Menger, F.; Littau, C. Gemini Surfactants: A New Class of Self-Assembling Molecules. J. Am. Chem. Soc. 1993, 115, 10083–10090. https://doi.org/10.1021/ja00075a025
[30] Zana, R.; Xia, J. Gemini Surfactants: Synthesis, Interfacial and Solution-Phase Behavior, and Applications; Marcel Dekker, 2004.
[31] Sakai, K. Development of Commercially Available Gemini Surfactants. J. Oleo Sci. 2012, 12, 627–633. https://doi.org/10.5650/oleoscience.12.627
[32] Rosen, M.J. Geminis: A New Generation of Surfactants.Chemtech 1993, 23, 30–33.
[33] Villa, C.; Baldassari, S.; Martino, D.F.C.; Spinella, A.; Caponetti, E. Green Synthesis, Molecular Characterization and Associative Behavior of Some Gemini Surfactants without a Spacer Group. Materials 2013, 6, 1506–1519. https://doi.org/10.3390/ma6041506
[34] Zana, R. Gemini (Dimeric) Surfactants. Curr. Opin. Colloid Interface Sci. 1996, 1, 566–571. https://doi.org/10.1016/S1359-0294(96)80093-8
[35] Brycki, B.E.; Kowalczyk, I.H; Szulc, A.; Kaczerewska, O.; Pakiet, M. Multifunctional Gemini Surfactants: Structure, Synthesis, Properties, and Applications. In Application and Characterization of Surfactants; Intech World's Largest Science, Technology & Medicine Open Access Book Publisher, 2017.
[36] Song, B.; Hu, Y.; Song, Y.; Zhao, J. Alkyl Chain Length- Dependent Viscoelastic Properties in Aqueous Wormlike Micellar Solutions of Anionic Gemini Surfactants with an Azobenzene Spacer. J. Colloid Interface Sci. 2010, 341, 94–100. https://doi.org/10.1016/j.jcis.2009.09.023
[37] Ahmady, A. R.; Hosseinzadeh, P.; Solouk, A.; Akbari, S.; Szulc, A.M.; Brycki, B.E. Cationic Gemini Surfactant Properties, Its Potential as a Promising Bioapplication Candidate, and Strategies for Improving Its Biocompatibility: A Review. Adv. Colloid Interface Sci. 2022, 299, 102581. https://doi.org/10.1016/j.cis.2021.102581
[38] Pei, X.; Zhao, J.; Ye, Y.; You, Y; Wei, X. Wormlike Micelles and Gels Reinforced by Hydrogen Bonding in Aqueous Cationic Gemini Surfactant Systems. Soft Matter 2011, 7, 2953–2960. https://doi.org/10.1039/C0SM01071E
[39] Degiorgio, V.; Corti, M. Physics of Amphiphiles: Micelles, Vesicles and Microemulsion; North Holland Physics Publishing, 1985.
[40] Shrestha, R.G.; Shrestha, L.K.; Matsunaga, T.; Shibayama, M.; Aramaki, K. Lipophilic Tail Architecture and Molecular Structure of Neutralizing Agent for the Controlled Rheology of Viscoelastic Fluid in Amino Acid-Based Anionic Surfactant System. Langmuir 2011, 27, 2229–2236. https://doi.org/10.1021/la1048248
[41] Shrestha, R.G.; Abezgauz, L.; Danino, D.; Sakai, K.; Sakai, H.; Abe, M. Structure and Dynamics of Poly(oxyethylene) Cholesteryl Ether Wormlike Micelles: Rheometry, SAXS, and Cryo-TEM Studies. Langmuir 2011, 27, 12877–12883. https://doi.org/10.1021/la202879f
[42] Bhadani, A.; Shrestha, R.G.; Koura, S.; Endo, T.; Sakai, K.; Abe, M.; Sakai, H. Self-Aggregation Properties of New Ester-Based Gemini Surfactants and Their Rheological Behavior in the Presence of Cosurfactant – Monolaurin. Colloids Surf. A: Physicochem. Eng. Asp. 2014, 461, 258–266.https://doi.org/10.1016/j.colsurfa.2014.08.001
[43] Pei, X.; Xu, Z.; Song, B.; Cui, Z.; Zhao, J. Wormlike Micelles Formed in Catanionic Systems Dominated by Cationic Gemini Surfactant: Synergistic Effect with High Efficiency. Colloids Surf. A: Physicochem. Eng. Asp. 2014, 443, 508–514. https://doi.org/10.1016/j.colsurfa.2013.12.007
[44] Lin, Z.; Scriven, L.E.; Davis, H.T. Cryogenic Electron Microscopy of Rodlike or Wormlike Micelles in Aqueous Solutions of Nonionic Surfactant Hexaethylene Glycol Monohexadecyl Ether. Langmuir 1992, 8, 2200–2205. https://doi.org/10.1021/la00045a021
[45] Vinson, P.K.; Talmon, Y. Comments on “Electron Diffraction Observed in the Gigantic Micelle-Producing System of CTAB- Aromatic Additives,” by Hirata, Sakaiguchi, and Akai. J. Colloid Interface Sci. 1989, 133, 288–289. https://doi.org/10.1016/0021-9797(89)90305-6
[46] Jerke, G.; Pedersen, J.S.; Egelhaaf, S.U.; Schurtenberger, P. Flexibility of Charged and Uncharged Polymer-Like Micelles. Langmuir 1998, 14, 6013–6024. https://doi.org/10.1021/la980390r
[47] Groth, C.; Nydén, M.; Holmberg, K.; Kanicky, J.R.; Shah, D.O. Kinetics of the Self-Assembly of Gemini Surfactants. J. Surfactants Deterg. 2004, 7, 247–255. https://doi.org/10.1007/s11743-004-0308-8
[48] Rosen, M.J.; Tracy, D.J. Gemini Surfactants. J. Surfactants Deterg. 1998, 1, 547–554. https://doi.org/10.1007/s11743-998-0057-8
[49] Micich, T.J.; Linfield, W.M. Wetting Properties of Nonionics from Branched Fatty Diamides. J. Am. Oil Chem. Soc. 1988, 65, 820–825. https://doi.org/10.1007/BF02542540
[50] Quencer, L.B.; Kokke-Hall, S.; Loughney, T. Proceedings of CESIO 4th World Surfactant Congress. 1996, 2, 66.
[51] Kumar, N.; Tyagi, R. Industrial Applications of Dimeric Surfactants: A Review. J. Dispers. Sci. Technol. 2014, 35, 205–214. https://doi.org/10.1080/01932691.2013.780243
[52] Rosen, M.J. Gemini Surfactants. Industrial Applications of Surfactants IV 1999, 151–161. https://doi.org/10.1533/9781845698614.151
[53] Li, J.; Dahanayake, M.; Reierson, R.L.; Tracy, D.J. Amphoteric Surfactants Having Multiple Hydrophobic and Hydrophilic Groups. US patent 5,914,310, June 22, 1999.
[54] Choi, T.-S.; Shimizu, Y.; Shirai, H.; Hamada, K. Disperse Dyeing of Nylon 6 Fiber Using Gemini Surfactants Containing Ammonium Cations as Auxililiaries. Dyes Pigments 2001, 48, 217–226. https://doi.org/10.1016/S0143-7208(00)00105-4
[55] Choi, T.-S.; Shimizu, Y.; Shirai, H.; Hamada, K. Disperse Dyeing of Polyester Fiber Using Gemini Surfactants Containing Ammonium Cations as Auxililiaries. Dyes Pigments 2001, 50, 55–65. https://doi.org/10.1016/S0143-7208(01)00033-X
[56] Choi, T.-S.; Shimizu, Y.; Shirai, H.; Hamada, K. Solubilization of Disperse Dyes in Cationic Gemini Surfactant Micelles. Dyes Pigments 2000, 45, 145–152. https://doi.org/10.1016/S0143-7208(00)00015-2
[57] Dreja, M.; Tieke, B. Polymerization of Styrene in Ternary Microemulsion Using Cationic Gemini Surfactants Langmuir 1998, 14, 800–807. https://doi.org/10.1021/la9710738
[58] El-Sadek, B.M. Synthesis of Selected Gemini Surfactants: Surface, Biological Activity and Corrosion Efficiency against Hydrochloric Acid Medium. Der Chemica Sinica 2011, 2, 125–137.
[59] Mobin, M.; Masroor, S. Cationic Gemini Surfactants as Novel Corrosion Inhibitor for Mild Steel in 1M HCl. Int. J. Electrochem. Sci. 2012, 7, 6920–6940. https://doi.org/10.1016/S1452-3981(23)15758-0
[60] Chen, X.; Wang, J.; Shen, N.; Luo, Y.; Li, L.; Liu, M.; Thomas, R.K. Gemini Surfactant/DNA Complex Monolayers at the Air−Water Interface: Effect of Surfactant Structure on the Assembly, Stability and Topography of Monolayers. Langmuir 2002, 18, 6222–6228. https://doi.org/10.1021/la025600l
[61] Yan, X.; Janout, V.; Regen, S.L. Hydrophobic Sponges: Resin- Bound Surfactants as Organic Scavengers. Macromolecules 2002, 35, 8243–8246. https://doi.org/10.1021/ma020568n
[62] Fielden, M.L.; Perrin, C.; Kremer, A.; Bergsma, M.; Stuart, M.C.; Camilleri, P.; Engberts, J.B.F.N. Sugar-Based Tertiary Amino Gemini Surfactants with a Vesicle-to-Micelle Transition in the Endosomal pH Range Mediate Efficient Transfection in vitro. Eur. J. Biochem. 2001, 268, 1269–1279. https://doi.org/10.1046/j.1432- 1327.2001.01995.x
[63] Buijnsters, P.J.J.A.; Rodríguez, C.L.G.; Willighagen, E.L.; Sommerdijk, N.A.J.M.; Kremer, A.; Camilleri, P.; Feiters, M.C.; Nolte, R.J.M.; Zwanenburg, B. Cationic Gemini Surfactants Based on Tartaric Acid: Synthesis, Aggregation, Monolayer Behaviour, and Interaction with DNA. Eur. J. Org. Chem. 2002, 2002, 1397– 1406. https://doi.org/10.1002/1099- 0690(200204)2002:8<1397::AID-EJOC1397>3.0.CO;2-6
[64] Wilhelm, M.; Zhao, C.L.; Wang, Y.; Xu, R.; Winnik, M.A.; Mura, J.L.; Riess, G.; Croucher, M.D. Poly(Styrene-Ethylene Oxide) Block Copolymer Micelle Formation in Water: A Fluorescence Probe Study. Macromoleules 1991, 24, 1033–1040. https://doi.org/10.1021/ma00005a010
[65] Schmitz, C.; Mourran, A.; Keul, H.; Möller, M. Synthesis and Association Behaviour of Linear Block Copolymers with Different Microstructures but the Same Composition. Macromol. Chem. Phys. 2008, 209, 1859–1971. https://doi.org/10.1002/macp.200800205
[66] Matsuoka, H.; Matsutani, M.; Mouri, E.; Matsumoto, K. Polymer Micelle Formation without Gibbs Monolayer Formation: Synthesis and Characteritics of Amphiphilic Diblock Copolymer Having Strong Acid Groups. Macromolecules 2003, 36, 5321–5330. https://doi.org/10.1021/ma0215161
[67] Khomenko, О.; Budishevska, O.; Voronov, A.; Varvarenko, S.; Kudina, O.; Tarnavchyk, I.; Voronov, S. Amphiphilic Diesters of Pyromellitic Acid with Cholesterol Fragments for Solubilization of Lipophilic Substances. Reports of the National Academy of Sciences of Ukraine 2013, 7, 123–129. http://dspace.nbuv.gov.ua/handle/123456789/85809
[68] Suckling, K.E.; Benson, G.M.; Bond, B.; Gee, A.; Glen, A.; Haynes, C.; Jackson, B. Cholesterol Lowering and Bile Acid Excretion in the Hamster with Cholestyramine Treatment. Atherosclerosis 1991, 89, 183–190. https://doi.org/10.1016/0021- 9150(91)90059-C
[69] Mol, M.J.T.M.; Erkelens, D.W.; Leuven, J.A.G.; Schouten, J.A.; Stalenhoef, A.F.H. Simvastatin (MK-733): A Potent Cholesterol Synthesis Inhibitor in Heterozygous Familial Hypercholesterolaemia. Atherosclerosis 1988, 69, 131–137. https://doi.org/10.1016/0021-9150(88)90006-8
[70] Rosenson, R. Patient education: High Cholesterol and Lipids (Beyond the Basics). UpToDate. 2024, Sep 27. UpToDate Inc. www.uptodate.com.
[71] Molecular probes. Amplex® RedCholesterolAssayKitCatalogno. A12216.
[72] Okada, H.; Toguchi, H. Biodegradable Microspheres in Drug Delivery. Crit. Rev. Ther. Drug Carrier Syst. 1995, 12, 1–99. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v12.i1.10
[73] Scott, G.; Gilead, D. Degradable Polymers, Principles and Applications; Chapman & Hall, 1995.
[74] Anderson, J.M.; Shive, M.S. Biodegradation and Biocompatibility of PLA and PLGA Microspheres. Adv. Drug Deliv. Rev. 2002, 64, 72–82.https://doi.org/10.1016/j.addr.2012.09.004
[75] Grizzi, I.; Garreau, H.; Li, S.; Vert, M. Hydrolytic Degradation of Devices Based on Poly(DL-Lactic Acid) Size-Dependence. Biomaterials 1995, 16, 305–311. https://doi.org/10.1016/0142- 9612(95)93258-F
[76] Vert, M.; Li, S.M.; Garreau, H. Attempts to Map the Structure and Degradation Characteristics of Aliphatic Polyesters Derived from Lactic and Glycolic Acids. J. Biomater. Sci. Polym. Ed. 1995, 6, 639–649. https://doi.org/10.1163/156856294X00581
[77] Vert, M.; Li, S. M.; Garreau, H. Recent Advances in the Field of Lactic Acid/Glycolic Acid Polymer-Based Therapeutic Systems. Macromol.Symp.1995,98,633–642.https://doi.org/10.1002/masy.19950980154
[78] Huh, K.M.; Min, H.S.; Lee, S.C.; Lee, H.J.; Kim, S.; Park, K. A New Hydrotropic Block Copolymer Micelle System for Aqueous Solubilization of Paclitaxel. J. Control. Release 2008, 126, 122–129. https://doi.org/10.1016/j.jconrel.2007.11.008
[79] Konno, T.; Junji, W.; Ishihara, K. Enhanced Solubility of Paclitaxel Using Water-Soluble and Biocompatible 2- Methacryloyloxyethyl Phosphorylcholine Polymers. J. Biomed. Mater. Res. - A 2003, 65A, 209–214.https://doi.org/10.1002/jbm.a.10481
[80] Kim, S.C.; Kim, D.W.; Shim, Y.H.; Bang, J.S.; Oh, H.S.; Kim, S.W.; Seo, M.H. In Vivo Evaluation of Polymeric Micellar Paclitaxel Formulation: Toxicity and Efficacy. J. Control. Release 2001, 72, 191–202. https://doi.org/10.1016/S0168-3659(01)00275-9
[81] Desai, N.P.; Trieu, V.; Hwang, L.Y.; Wu, R.; Soon-Shiong, P.; Gradishar, W.J. Improved Effectiveness of Nanoparticle Albumin- Bound (NAB) Paclitaxel Versus Polysorbate-Based Docetaxel in Multiple Xenografts as a Function of HER2 and SPARC Status.Anti-Cancer Drugs 2008, 19, 899–909. https://doi.org/10.1097/CAD.0b013e32830f9046
[82] Wu, J.; Liu, Q.; Lee, R.J. A Folate Receptor-Targeted Liposomal Formulation for Paclitaxel. Int. J. Pharm. 2006, 316, 148–153. https://doi.org/10.1016/j.ijpharm.2006.02.027
[83] Litzinger, D.C.; Huang, L. Phosphatodylethanolamine Liposomes: Drug Delivery, Gene Transfer and Immunodiagnostic Applications. Biochim. Biophys. Acta, Rev. Biomembr. 1992, 1113, 201–227. https://doi.org/10.1016/0304-4157(92)90039-D
[84] Sinha, R.; Kim, G.J.; Nie, S.; Shin, D.M. Nanotechnology in Cancer Therapeutics: Bioconjugated Nanoparticles for Drug Delivery. Mol. Cancer Ther. 2006, 5, 1909–1917. https://doi.org/10.1158/1535-7163.MCT-06-0141
[85] Sakamoto, J.H.; van de Ven, A.L.; Godin, B.; Blanco, E.; Serda, R.E.; Grattoni, A.; Ziemys, A.; Bouamrani, A.; Hu, T.; Ranganathan, S.I. et al. Enabling Individualized Therapy through Nanotechnology. Pharmacol. Res. 2010, 62, 57–89.https://doi.org/10.1016/j.phrs.2009.12.011
[86] Lo, C.-L.; Lin, K.-M.; Huang, C.-K.; Hsiue, G.-H. Self-Assembly of a Micelle Structure from Graft and Diblock Copolymers: An Example of Overcoming the Limitations of Polyions in Drug Delivery. Adv. Funct. Mater. 2006, 16, 2309– 2316. https://doi.org/10.1002/adfm.200500627
[87] Anand, P.; Kunnumakkara, A.B.; Newman, R.A. Aggarwal, B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharmaceutics 2007, 4, 807–818. https://doi.org/10.1021/mp700113r
[88] Demchuk, Z.; Savka, M.; Voronov, A.; Budishevska, O.; Donchak, V.; Voronov, S. Amphiphilic Polymers Containing Cholesterol for Drug Delivery Systems. Chem. Chem. Technol. 2016, 10, 561–570. https://doi.org/10.23939/chcht10.04si.561
[89] Kumar, A.; Ahuja, A.; Ali, J.; Baboota, S. Conundrum and Therapeutic Potential of Curcumin in Drug Delivery. Crit. Rev. Ther. Drug Carrier Syst. 2010, 27, 279–312. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v27.i4.10
[90] Khomenko, O.; Budishevska, O.;Voronov, A.; Kudina, О.; Tarnavchyk, I.; Voronov, S. Amphiphilic Oligomers Based on Diesters of Pyromellitic Acid for the Solubilization of Lipophilic Agents. Int. J. Theor. Appl. Nanotechnol. 2013, 1, 17–25. https://doi.org/10.11159/ijtan.2013.002
[91] Lipophilicity in Drug Action and Toxicology; Plišca, V.; Testa, B.; van de Waterbeemd, H., Eds.; VCH: Weinheim, 1996.
[92] Popadyuk, N.; Zholobko, O.; Donchak, V.; Harhay, K.; Budishevska, O.; Voronov, A.; Kohut, A.; Voronov, S. Ionically and Covalently Crosslinked Hydrogel Particles Based on Chitosan and Poly(Ethylene Glycol). Chem. Chem. Technol. 2014, 8, 171–176. https://doi.org/10.23939/chcht08.02.171
[93] Khomenko, О.; Budishevska, O; Varvarenko, S.; Voronov, A.; Kudina, О.; Chekailo, M.; Voronov, S. Micellar structures of amphiphilic diesters of pyromellitic acid for the synthesis of silver nanoparticles. Bulletin of the National University "Lviv Polytechnic" series: "Chemistry, technology of substances and their applications" 2012, 726, 332–340.
[94] Voronov, A.; Kohut, A.; Vasylyev, S.; Peukert, W. Mechanism of Silver Ion Reduction in Concentrated Solutions of Amphiphilic Invertible Polyesters in Nonpolar Solvent at Room Temperature.Langmuir 2008, 24, 12587–12594.https://doi.org/10.1021/la801769v