Characteristics of Fly Ash as a Composite Filler

2025;
: pp. 342 - 353
1
Department of Chemical Technology of Composite Materials, Faculty of Chemical Technology, National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, Ukraine
2
Department of Chemical Technology of Composite Materials, Faculty of Chemical Technology, National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, Ukraine
3
Department of Chemical Technology of Composite Materials, Faculty of Chemical Technology, National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, Ukraine
4
Department of Physics, Taras Shevchenko National University of Kyiv, Ukraine
5
Department of Chemical Technology of Composite Materials, Faculty of Chemical Technology, National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, Ukraine

The object of the study was composite materials using fly ash from Burshtyn and Kurakhiv TPPs as fillers and polymer dispersions Policril 590 and Latex 2012 as matrices. The relationship between the composition of the types of fly ash from Ukrainian thermal power plants and the peculiarities of the energy state of the dispersed filler particles surface as a factor of interaction with the binder in forming the polymer composite structure was determined. The effect of high concentration of fillers on the formation of the pore structure and indicators of physical and mechanical properties of composites was evaluated. The possibility of adjusting the composite properties in the following range was established: water absorption 4.2-12.7%, abrasion 0.02-0.06 g/cm2, residual strain 0.3-1.3, Young's modulus 0.6-49.1 MPa.

[1] Shapakidze, E.; Avaliani, M.; Nadirashvili, M.; Maisuradze, V.; Gejadze, I.; Petriashvili, T. Synthesis and Study of Properties of Geopolymer Materials Developed Using Local Natural Raw Materials and Industrial Waste. Chem. Chem. Technol. 2023, 17, 711–718. https://doi.org/10.23939/chcht17.04.711

[2] Kabat, O.; Sytar, V.; Derkach, O.; Sukhyy, K. Polymeric Composite Materials оf Tribotechnical Purpose With а High Level оf Physical, Mechanical аnd Thermal Properties. Chem. Chem. Technol. 2021, 15, 543–550. https://doi.org/10.23939/chcht15.04.543

[3] Stasevych, M.; Zvarych, V.; Dronik, M.; Sozanskyi, M.; Khomyak, S. Application of Infrared Spectroscopy and X-Ray Powder Diffractometry for Assessment of the Qualitative Composition of Components in a Pharmaceutical Formulation. Chem. Chem. Technol. 2023, 17, 510–517 https://doi.org/10.23939/chcht17.03.510

[4] Haluschak, M. O.; Ralchenko, V. G.; Tkachuk, A. I.; Freik, D. M. Methods of Measuring the Thermal Conductivity of Bulk Solids and Thin Films (Review). Physics and Chemistry of Solid State 2013, 14, 317-344. http://page.if.ua/uploads/pcss/vol14/anote1402.htm

[5] Demchenko, V.; Simyachko, O.; Svidersky, V. Research of Mineralogical Composition, Structure and Properties of the Surface of Ukrainian Ash Microspheres. Technology audit and production reserves 2017, 6, 28–34. https://doi.org/10.15587/2312-8372.2017.118958

[6] Kashkovsky, V. I.; Yevdokymenko, V. O.; Kamenskyh, D. S.; Tkachenko, T. V.; Vakhrin, V. V. Ash and Ash-Slag Waste as Multifunctional Raw Material. Nauka Innov. 2017, 13, 54–64. https://doi.org/10.15407/scin13.03.054

[7] Dvorkin, L. Y. Efektyvny zolny tsement, betony ta rozchyny; NUVHP: Rivne, 2022.

[8] Perkov, Y.; Perkova, T. Recycling of Prydniprovska Thermal Power Plant Fly Ash. Min. Miner. Depos. 2017, 11, 106–112. https://doi.org/10.15407/mining11.01.106

[9] Popov, O.; Iatsyshyn, A.; Kovach, V.; Artemchuk, V.; Kameneva, I.; Radchenko, O.; Nikolaiev, K.; Stanytsina, V.; Iatsyshyn, A.; Romanenko, Y. Effect of Power Plant Ash and Slag Disposal on the Environment and Population Health in Ukraine. J. Health Pollut. 2021, 11, 210910. https://doi.org/10.5696/2156-9614-11.31.210910

[10] Mironyuk, I. F.; Tatarchuk, T. R.; Vasylyeva, H. V.; Yaremiy, I. P.; Mykytyn, I. M. Morphology, Phase Composition and Radiological Properties of Fly Ash Obtained from the Burshtyn Thermal Power Plant. Physics and Chemistry of Solid State 2019, 19, 171–178. https://doi.org/10.15330/pcss.19.2.171-178

[11] DSTU B V.2.7-205:2009 Budivelni materialy. Zoly-vynosu teplovykh elektrostantsii dlia betoniv. Tekhnichni umovy.

[12] Wasekar, P. A.; Kadam, P. G.; Mhaske, S. T. Effect of Cenosphere Concentration on the Mechanical, Thermal, Rheological, and Morphological Properties of Nylon 6. J. Miner. Mater. Charact. Eng. 2012, 11, 807–812. https://doi.org/10.4236/jmmce.2012.118070

[13] Holdajeva, M. I. The structure and properties of polystyrene concrete with micro-spherical napovnjuvachem. Ph.D. Thesis, 2010.

[14] Hossny Raghab, E. M. Heat-resistant lightweight concretes on composite binders with hollow ash microspheres. Ph.D. Thesis, 2005.

[15] Nagaraja, S.; Anand, P. B.; H. D., Shivakumar; Ammarullah, M. I. Influence of fly ash filler on the mechanical properties and water absorption behaviour of epoxy polymer composites reinforced with pineapple leaf fibre for biomedical applications. RSC Adv. 2024, 14, 14680–14696. https://doi.org/10.1039/d4ra00529E

[16] Kovalskyi, V. P.; Sidlak, O. S. Vykorystannia zoly vynosu TES u budivelnykh materialakh. Suchasni tekhnolohii, materialy i konstruktsii u budivnytstvi 2014, 16, 35–40. http://stmkvb.vntu.edu.ua/index.php/stmkvb/article/view/327

[17] Nagaraja, S.; Anand, P. B.; Kumar, M. K.; Ammarullah, M. I. Synergistic Advances in Natural Fibre Composites: A Comprehensive Review of the Eco-Friendly Bio-Composite Development, its Characterization and Diverse Applications. RSC Adv. 2024, 14, 17594–17611. https://doi.org/10.1039/d4ra00149d

[18] Wang, Q.; Wang, D.; Chen, H. The Role of Fly Ash Microsphere in the Microstructure and Macroscopic Properties of High-Strength Concrete. Cem. Concr. Compos. 2017, 83, 125–137. https://doi.org/10.1016/j.cemconcomp.2017.07.021

[19] Nguyen, D. K.; Tran, A. T. H.; Kaus, N. H. M. Preparation and Characterization of Red Mud-Based Geopolymer Composited with Rice Husk Ash for the Adsorption of Bromocresol Green in Aqueous Solution. Chem. Chem. Technol. 2023, 17, 857–869 https://doi.org/10.23939/chcht17.04.857

[20] Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. https://doi.org/10.1021/ja01269a023

[21] Cheng, M.; Xie, X.; Schmitz, P.; Fillaudeau, L. Extensive Review about Industrial and Laboratory Dynamic Filtration Modules: Scientific Production, Configurations and Performances. Sep. Purif. Technol. 2021, 265, 118293. https://doi.org/10.1016/j.seppur.2020.118293

[22] Labajos-Broncano, L.; González-Martı́ N, M.; Bruque, J.; GonzálezGarcı́A, C. Comparison of the Use of Washburn’s Equation in the Distance – Time and Weight – Time Imbibition Techniques. J. Colloid Interface Sci 2001, 233, 356–360. https://doi.org/10.1006/jcis.2000.7283

[23] Myronyuk, O.; Baklan, D.; Nudchenko, L. Evaluation of the Surface Energy of Dispersed Aluminium Oxide Using Оwens- Wendt Theory. Technology audit and production reserves 2020, 2, 25–27. https://doi.org/10.15587/2312-8372.2020.200756

[24] Vovchenko, L.; Matzui, L.; Zhuravkov, A.; Samchuk, A. Electrical Resistivity of Compacted TEG and TEG-Fe under Compression. J. Phys. Chem. Solids 2006, 67, 1168–1172. https://doi.org/10.1016/j.jpcs.2006.01.042

[25] Moskalenko, O. V.; Tsygankov, S. A.; Yanchenko, V. O.; Tsygankov, A. S. Spectral methods of analysis; Mykola Gogol NSU Publishing House: Nizhin, 2022.

[26] Deepthi, M. V.; Sharma, M.; Sailaja, R. R. N.; Anantha, P.; Sampathkumaran, P.; Seetharamu, S. Mechanical and Thermal Characteristics of High-Density Polyethylene–Fly Ash Cenospheres Composites. Mater. Des. 2010, 31, 2051–2060. https://doi.org/10.1016/j.matdes.2009.10.014

[27] Xiang, W.; Hong, S.; Xue, Y.; Ma, Y. Functional Analysis of Novel alkB Genes Encoding Long-Chain n-Alkane Hydroxylases in Rhodococcus sp. Strain CH91. Microorganisms 2023, 11, 1537. https://doi.org/10.3390/microorganisms11061537

[28] Liu, H.; Sun, Q.; Wang, B.; Wang, P.; Zou, J. Morphology and Composition of Microspheres in Fly Ash from the Luohuang Power Plant, Chongqing, Southwestern China. Minerals 2016, 6, 30. https://doi.org/10.3390/min6020030

[29] Myronyuk, I. F.; Mandzyuk, V. I.; Sachko, V. M.; Gun’ko, V. M. Structural Features of Carbons Produced Using Glucose, Lactose, and Saccharose. Nanoscale Res. Lett. 2016, 11, 508. https://doi.org/10.1186/s11671-016-1723-z

[30] Khlopytskyi, O. O. Stan, problemy ta perspektyvy pererobky zoloshlakovykh vidkhodiv teploelektrostantsii Ukrainy. ScienceRise 2014, 4, 23–28. https://doi.org/10.15587/2313-8416.2014.28511

[31] Pylypenko, O. Surface phenomena and dispersed systems: Lecture notes; O. M. Beketov NUUE: Kharkiv, 2024.

[32] Fischer, E. J.; Cuccato, D.; Storti, G.; Morbidelli, M. Effect of the Charge Interactions on the Composition Behavior of Acrylamide/Acrylic Acid Copolymerization in Aqueous Medium. Eur. Polym. J. 2018, 98, 302–312. https://doi.org/10.1016/j.eurpolymj.2017.11.022

[33] Crompton, T. R. Practical Polymer Analysis; Springer US: Boston, MA, 1993. https://doi.org/10.1007/978-1-4615-2874-6

[34] Guo, T.; Song, J.; Jin, Y.; Sun, Z.; Li, L. Thermally Stable and Green Cellulose-Based Composites Strengthened by Styrene-co- Acrylate Latex for Lithium-Ion Battery Separators. Carbohydr. Polym. 2019, 206, 801–810. https://doi.org/10.1016/j.carbpol.2018.11.025

[35] Skachkov, V. O.; Berezhna, O. R.; Belokon, Yu. O. High- temperature composite materials based on carbon and ceramics: monograph; ZGIA: Zaporizhia, 2016.