математична модель

Mathematical Model of Movement of Bulk Material in a Vibratory Separator

Aim. The aim is to construct the mathematical model of the movement of loose material in a vibrating separator. Method. The calculation scheme of the vibration separator with two eccentric vibrators with an independent drive was built. Based on the scheme, it is assumed that the vibration separator performs only vertical oscillations in the plane of rotation of the eccentric vibrators.

Influence of vehicle acceleration intensity on dual-mass flywheel elements and transmission load

Modern high-torque low-speed internal combustion engines (ICEs) generate torsional vibrations close in disturbance frequency to gearboxes natural oscillation frequencies. Effective absorption of such oscillations requires a new torsional vibration damper between the internal combustion engine and gearbox design, which is implemented in the form of a dual-mass flywheel (DMF). One of the main reasons for DMF failure is its spring components destruction.

Dynamics of Adsorption of Copper Ions in Fixed-Bed Column and Mathematical Interpretation of the First Stage of the Process

The dynamics of the adsorption process in the fixed-bed column was experimentally studied on the example of the system natural zeolite - water solution of copper salt with low concentrations, which are characteristic for wastewater treatment processes from toxic contaminants. The initial curves of the adsorption process for the height of the sorbent layer of 5 and 7 cm were constructed. The equilibrium of such processes can be described by Henry's linear equation. The adsorption process in the layer consists of two stages, which are examined in the study.

Physical and Mathematical Models of Target Component Extraction from Rectlinear Capillaries

The extraction of the solid component from the rectilinear capillary has been investigated. The presence of two extraction zones (convective and molecular diffusion) was confirmed. The effect of the system vacuumizing on the extraction rate has been studied. The convection zone during vacuumizing was found to be increased due to the appearance of the vapor phase bubbles. The mass transfer coefficients for the convective zone have been determined.

Solving the Forward Kinematics Problem for a Welding Manipulator With Six Degrees of Freedom

The article proposes a solution of the forward kinematics problem for a welding manipulator with six degrees of freedom. Solving this problem is the first necessary step in creating a control system for this manipulator. This will make it possible to determine the displacement, accelerations and moments in each of the manipulator parts and will ensure accurate positioning of the welding tool.

Multiplicity of Overvoltages during Arc Single Phase Earth Faults in 35 kV Electrical Grids

The arc overvoltages during the single phase to earth faults in electrical distribution grids of 6-35 kV are the object of the research in this paper. The development of 35 kV distribution electrical grids is accompanied by the construction of new overhead and cable power lines. It causes a change of the capacitive earth fault current in the grids and also affects the multiplicity of overvoltages in electrical distribution grids during the single phase to earth faults.

Modeling the energy-dynamic modes of a wind farm with a battery energy storage system (BESS)

The article presents the results of mathematical modeling of the energy-dynamic processes of a wind farm which includes a battery energy storage system (BESS). The dependence between load capacity and energy generation capabilities of the active set of a wind power plant taking into account the energy capacity of BESS has been determined. A mathematical model of the BESS has been developed. The elaborated model is compared with two other models: a black box module and a model based on equivalent circuit model.

Analysis of magnetic fields of electrical devices based on their circuit models

The article deals with an analysis of magnetic fields of electric machines and electromagnetic devices on the basis of their circuit mathematical models. The magnetic systems of electrical devices in these models are presented in the form of planar nonlinear magnetic circuits with lumped elements. The parameters of these elements are determined on the basis of geometric dimensions taking into account the design features of the devices and the physical parameters of the environment.

Kinetic Regularities and Mathematical Modelling of Potassium Chloride Dissolution

The dissolution process of potassium chloride particles in the apparatus with two-blade mechanical stirrer was investigated and the mass transfer coefficient was determined. The experimental results were generalized by criterion dependence. The independence of the mass transfer coefficient from the solid particles diameter was confirmed. A countercurrent process of potassium salt dissolution in two apparatuses with a mechanical stirring was considered. A mathematical model for countercurrent dissolution was developed and the efficiency of this process was determined.

Phase Equilibrium of Petroleum Dispersion Systems in Terms of Thermodynamics and Kinetics

The process of paraffin formation has been considered, including the peculiarities of the paraffin structure as a result of phase transitions with a decreasing temperature. Mathematical models for thermodynamic and kinetic calculations of the "solid-liquid" system phase equilibrium have been developed. To shift the "fuel oil-paraffin" balance towards the liquid, it is necessary to reduce the activity ratio of solid and liquid phases by introducing into the system a substance with a lower solubility parameter.