Copolymerization of Industrial Organochlorine Waste with Wood Pyrolysis Products for Bitumen Compositions

2023;
: pp. 929 - 935
1
Vasyl Stefanyk Precarpathian National University
2
1 V. Stefanyk Precarpathian National University
3
Lviv Polytechnic National University
4
I.I. Mechnikov Odesa National University
5
Perechyn Timber and Chemical Plant

The work presents a new approach to the copolymerization and co-processing of industrial organochlorine waste (OCW) resulted in the production of vinyl chloride at Karpatnaftochim LLC, Kalush, Ukraine, and liquid wood pyrolysis products (LWPP) generated by the activated charcoal production at Perechyn Forestry and Chemical Plant, LLC. Kalush, Ukraine. This article highlights studies of the composition of the raw materials and the properties of the resulting products. Through the use of infrared spectroscopy and DTA analysis, the primary structure and properties of copolymers, oligomers, asphalt and bitumen products obtained from OCW and LWPP were determined. It describes the trial of the liquid products of wood pyrolysis in bitumen compositions with OCW.

  1. Kurta, S. Catalysis of Ethylene Oxyclorination into 1,2-Diclorethane in the Presence of CuCl2/CuCl Active Centers on the Surface of γ-Al2O3. Chem. Chem. Technol. 2012, 6, 1–8. https://doi.org/10.23939/chcht06.01.001
  2. Kurta, S.; Zakrzhevsky, A.; Kurta, M. Utilization of Chloroorganic Waste by their Catalytic Copolymerization. Polimery 2007, 52, 51–55. http://doi.org/10.14314/polimery.2007.051
  3. Starchevskyy, V.; Shparij, M.; Hrynchuk, Yu.; Reutskyy, V.; Kurta, S.; Hatsevych, O. Modification of the Catalytic System or the Industrial Chlorine Processing of Ethylene in 1,2-Dichloro-Ethane. Chem. Chem. Technol. 2020, 14, 394–402. https://doi.org/10.23939/chcht14.03.394
  4. Kurta, S.A.; Zakrzhevskyi, O.Y.; Kurta, O.S. Metody utylizatsii khlororhanichnykh ta sulfidovmisnykh vidkhodiv. Ekolohiya ta promyslovist 2009, 1, 64–68. http://nbuv.gov.ua/UJRN/ekolprom_2009_1_15
  5. Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B., Pyshyev, S.V. Application of phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906–2918. https://doi.org/10.1080/14680629.2020.1808518
  6. Postiyny Tekhnolohichny Reglament Tsekhu Vyrobnytstva Khlorystoho Vinilkhlorydu: “Fridrikh Ude” i JSC “Khiminterengineering” V-35/95, Kalush 1991–1995.
  7. WOOD PYROLYSIS (dry distillation of wood) http://greenpower.com.ua/clients/articles/2016-09-01-17-13-10
  8. Antal Jr, M.J.; Morten Grønli, M. The Art, Science, and Technology of Charcoal Production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. https://doi.org/10.1021/ie0207919
  9. Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
  10. Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 95–102. https://doi.org/10.1007/978-3-030-57340-9_12