Research on the Temperature of the Tool for Multi-pass Cutting of Gears by the Power Skiving Method

2025;
: pp. 108 - 120
Authors:
1
Lviv Polytechnic National University, Ukraine

Problem statement and the research purpose. Problem statement and purpose of the work: This paper presents a method for predicting the temperature of carbide tools used for cutting gear wheels with the Power Skiving method. This task is particularly relevant for automated equipment, including gear-cutting machines. Methodology. Reliability is defined by the thermal state of the cutter tooth at which a thermal crack will occur on its top blade, leading to breakage and loss of system performance. The heat generated by a single tooth when cutting a gear wheel is determined by calculating the total cutting work and overcoming friction on the contact surfaces of the cutting wedge, as well as the heat balance in the cutting zone. Results. The temperature at the top of the tooth is determined by the volume in which it is generated, i. e. within the area of contact between the chip and the front surface, as well as the permissible width of the wear area on the rear surface. Scientific novelty and practical significance. The developed methodology enables the initial data to be adjusted to ensure the machine operates without issue. If the maximum temperature exceeds the heat resistance limit of the tool material, the material of the cutting plates must be adjusted or the cutting modes (cutting speed, number of passes and cutting depth) must be changed. Adjusting the operation and selecting the best option can be based on comparing the time required for each option. Scopes of further investigations on the subject of the paper. Further research will involve conducting an experiment and comparing the results obtained with those calculated analytically.

  1. Nishikawa, T., Shimada, S., Kobayashi, G., et al. Using power skiving to increase the efficiency and precision of internal gear cutting. Komatsu technical report 64(171):1–7, 2018.
  2. Pittler, V. Verfahren zom Schneiden von Zahnrädern mittels eines zahnradartiges, an den Stirnflächen der Zähne mit Schneidekanten versehenen Schneidwerkzeugs, Deutsche Patentschrift No. 243514, W. (1910).
  3. Yanase, Y., Usude, J., Ishizu, K., Kikuchi, T., Ochi, M. (2018). The latest gear manufacturing technology for high accuracy and efficiency. Mitsubishi Heavy Industries Technical Review, 55(3), 1.
  4. Sugimoto, T., Ishibashi, A., Yonekura, M. Performance of skiving hobs in finishing induction hardened and carburized gears. Gear Technology, 2003. Vol. 20, No. 3. Р. 34–41.
  5. Vnukov, Yu. M., Zaloga, V. O. Znoshuvannya i stiykist’ rizal’nykh lezovykh instrumentiv : navch. posib. [Wear and durability of cutting blade tools]: a textbook. 2-edition. Sumy: Sumy State University, 2024. 273 p. ISBN 978-966-657-148-2 [In Ukrainian].
  6. Spath, D., Hühsam, A. Skiving for high-performance machining of periodic structures, CIRP Ann. Manuf. Technol. 51. (2002). 91–94. DOI: 10.1016/ S0007-8506(07)61473-5
  7. Schulze, V., Kühlewein, C., Autenrieth, H. 3D-FEM modeling of gear skiving to investigate kinematics and chip formation mechanisms, Adv. Mater. Res. 223. (2011). 46–55. DOI: 10.4028/www.scientific.net/AMR.223.46
  8. Klocke, F., Brecher, C., Löpenhaus C., Ganser P., Staudt, J., Krömer, M. Technological and simulative analysis of power skiving, Procedia CIRP. (2016). 773–778. DOI: 10.1016/j.procir.2016.05.052
  9. Wang, W. P., Wang, K. K. Geometric modelling for swept volume of moving solids, IEEE Computer Graphics and Applications. (1986). 8–17.
  10. Nishikawa, T., Shimada, S., Kobayashi, G., Zongwei, R., Sugita, N. Using Power Skiving to Increase the Efficiency and Precision of Internal Gear Cutting, Komatsu Tech. Rep. 64. (2018). 1–7.
  11. Ren, Z., Fang, Z., Arakane, T., Kizaki, T., Nishikawa, T., Feng, Y., Kugo, J., Nabata, E., Sugita, N. Parametric modeling of uncut chip geometry for predicting crater wear in gear skiving, J. Mater. Process. Technol. (2021). 290. DOI: 10.1016/j.jmatprotec.2020.116973
  12. McCloskey, P., Katz, A., Berglind, L., Erkorkmaz, K., Ozturk, E., Ismail, F. Chip geometry and cutting forces in gear power skiving, CIRP Ann. 68. (2019). 109–112. DOI: 10.1016/j.cirp.2019.04.085
  13. Inui, M., Huang, Y., Onozuka, H., Umezu, N. Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation, Procedia Manuf. 48. (2020). 520–527. DOI: 10.1016/j.promfg.2020.05.078
  14. Fang, Z., Ren, Z., Kizaki T., Feng, Y., Kugo, J., Komatsu Y., Sugita, N. Construction of uncut chip geometry in gear skiving using level contours, Precis. Eng. 73. (2021). 93–103, DOI: 10.1016/j.precisioneng.2021.08.013
  15. Ren, Z., Fang Z., Kizaki, T., Feng, Y., Nagata. Understanding local cutting features affecting surface integrity of gear flank in gear skiving, Int. J. Mach. Tools Manuf. (2022). 172.
  16. Antoniadis, Gear skiving – CAD simulation approach, CAD Comput. Aided Des. 44. (2012). 611–616. DOI: 10.1016/j.cad.2012.02.003
  17. Onozuka, H., Tayama, F., Huang, Y., Inui, M. Cutting force model for power skiving of internal gear, J. Manuf. Process. 56. (2020). 1277–1285. DOI: https://doi.org/ 10.1016/j.jmapro.2020.04.022
  18. Wu, X., Li, J., Jin, Y., Zheng, S. Temperature calculation of the tool and chip in slicing process with equal-rake angle arc-tooth slice tool, Mech. Syst. Signal Process. 143. (2020). DOI: https://doi.org/10.1016/j. ymssp.2020.106793
  19. Zhang, L., Liu, J., Wu, X., Zhuang, C. Digital twin-based dynamic prediction of thermomechanical coupling for skiving process, Int. J. Adv. Manuf. Technol. (2022). DOI: 10.1007/s00170-022-08908-8
  20. Li, J., Wang, P., Jin, Y. Q., Hu, Q., Chen, X. C. Cutting force calculation for gear slicing with energy method, Int. J. Adv. Manuf. Technol. 83. (2016). 887–896. DOI: 10.1007/s00170-015-7630-0
  21. Stadtfeld, H. J. Power skiving of cylindrical gears on different machine platforms, Gear Technology 31 (1). (2014). 52–62.
  22. Arndt, T., Klose, J., Gerstenmeyer, M., Schulze, V. Tool wear development in gear skiving process of quenched and tempered internal gears, Forsch. Ing. Eng. Res. (2021). DOI: 10.1007/s10010-021-00544-0
  23. Slipchuk, A. M. Doslidzhennya temperatury instrumenta pid chas narizannya vnutrishnikh zubchastykh kolis metodom Power Skiving. [Research on tool temperature during power skiving of internal gears]. Automation of production processes in mechanical engineering and instrument engineering. Ukrainian interdepartmental scientific and technical collection. L’viv 2024. No. 58, p. 47–59. DOI: 10.23939/istcipa2023.58.047 [In Ukrainian].
  24. Hrytsay, I., Slipchuk, A. Features of using the power skiving method for multi-pass cutting of internal gears. Archive of Mechanical Engineering. 2024. Vol. 71, No. 2. P. 213–226. DOI: 10.24425/ame.2024.149636
  25. Hrytsay, I., Stupnytskyy, V. Hob wear prediction based on simulation of friction, heat fluxes, and cutting temperature. Archive of Mechanical Engineering. 2023. Vol. 70, No. 2. P. 271–286. DOI: 10.24425/ame.2023.145582
  26. Hrytsay, I., Slipchuk, A. Bosansky, M. Prediction of cutting tool stability based on temperature modelling in power skiving gear cutting process. Strojnícky časopis – Journal of Mechanical Engineering. 2025. Vol. 75, No. 1. P. 39–48. DOI: 10.2478/scjme-2025-0005
  27. Wu, X., Li, J., Jin, Y., Zheng, S. Temperature calculation of the tool and chip in slicing process with equal-rake angle arc-tooth slice tool. Mechanical Systems and Signal Processing. 2020. Vol. 143. Article ID: 106793. DOI: 10.1016/j.ymssp.2020.106793
  28. Slipchuk, A. M. Symulyatsiya protsesu Power Skiving dlya narizannya vnutrishn’oho zubchastoho kolesa z modelyuvannyam nedeformovanoyi struzhky [Simulation of the Power Skiving process for internal gear cutting with undeformed chip simulation]. Automation of production processes in mechanical engineering and instrument engineering. Ukrainian interdepartmental scientific and technical collection. L’viv 2023. No. 57. Р. 46–58. DOI: 10.23939/istcipa2023.57.046 [In Ukrainian].