Procedures for Assessing the Quality of Electronic Learning Resources Using Petal Diagrams

2022;
: pp. 87 - 102
1
Lviv Politechnik National University
2
Lesya Ukrainka Volyn National University
3
Lesya Ukrainka Volyn National University

The concept of visualization of the results of expert evaluation of the quality of electronic learning resources is considered. Much attention is paid to petal diagrams and their use in the visualization process. The algorithm for calculating the area of the petal diagram and the influence of the order of parameters on the area of each petal are described. The criteria for assessing the quality of e-learning resources and their weights for each of the experts are presented. The roles of experts with weighting factors are shown. Complex indicators of quality of electronic educational resources for each expert are defined and the complex indicator for all experts is generalized. An algorithm for calculating the areas of sector petals, which can be used to calculate and evaluate the relative quality of ELR according to the relevant criteria is given. GeoGebra dynamic mathematics system was used to implement the method of determining a comprehensive assessment of the quality of ELR. The process of construction of the petal diagram in the system of dynamic mathematics GeoGebra with the given instructions is shown.

  1. Bigham Bahram, Mohades A. (2019). The Dual of Polar Diagram and its Extraction. Recent Progress in Computational Sciences and Engineering, 451-454. https://doi.org/10.1201/9780429070655-10
  2. Boiko, O., Shendryk, V., Parfenenko, Y., Pavlenko, P., & Kholiavka, Y. (2021). Development of expert assessment methods in planning energy supply of buildings with renewable energy sources. Technology Audit and Production Reserves, 2(58), 51-54. https://doi.org/10.15587/2706-5448.2021.230230
  3. Brasseur, L. (2005). Florence nightingale's visual rhetoric in the rose diagrams. Technical Communication Quarterly, 14(2), 161-182, https://doi.org/10.1207/s15427625tcq1402_3
  4. Burch, M. & Weiskopf, D. (2014). On the benefits and drawbacks of radial diagrams. In Handbook of Human Centric Visualization, 429-451, https://doi.org/10.1007/978-1-4614-7485-2_17. https://doi.org/10.1007/978-1-4614-7485-2_17
  5. Burch, M. (2015). The Aesthetics of Diagrams. IVAPP 2015 - 6th International Conference on Information Visualization Theory and Applications; VISIGRAPP, Proceedings, 262-267. https://doi.org/10.5220/0005357502620267
  6. Conati, C., Carenini, G., Hoque, E., Steichen, B. & Toker D. (2014). Evaluating the Impact of User Characteristics and Different Layouts on an Interactive Visualization for Decision Making. Computer Graphics Forum. 33, 371-380. https://doi.org/10.1111/cgf.12393
  7. Diehl, S., Beck, F. & Burch, M. (2010). Uncovering strengths and weaknesses of radial visualizations - an empirical approach. IEEE Transactions on Visualization and Computer Graphics, 16(6), 935-942. https://doi.org/10.1109/TVCG.2010.209
  8. Draper, G. M., Livnat, Y., & Riesenfeld R. F. (2009). A survey of radial methods for information visualization. IEEE Transactions on Visualization and Computer Graphics, 15(5), 759-776. https://doi.org/10.1109/TVCG.2009.23
  9. Filipov, V., Schetinger, V., Raminger, K., Soursos, N., Zapke, S., & Miksch, S. (2021). Gone full circle: A radial approach to visualize event-based networks in digital humanities. Visual Informatics, 5(1), 45-60. https://doi.org/10.1016/j.visinf.2021.01.001
  10. Galbraith, Rex F. (1994). Some Applications of Radial Plots. Journal of the American Statistical Association, 89(428) 1232-42. https://doi.org/10.2307/2290987
  11. Justin K. Dimmel & Patricio G. Herbst. (2015). The Semiotic Structure of Geometry Diagrams: How Textbook Diagrams Convey Meaning. Journal for Research in Mathematics Education, 46(2) 147-195. https://doi.org/10.5951/jresematheduc.46.2.0147
  12. Kanthara, S., Leong, R., Lin, X., Masry, A., Thakkar, M., Hoque, E. & Joty, S. (2022). Chart-to-Text: A Large-Scale Benchmark for Chart Summarization. https://doi.org/10.18653/v1/2022.acl-long.277
  13. Khan, M. & Khan, S. (2011). Data and Information Visualization Methods, and Interactive Mechanisms: A Survey. International Journal of Computer Applications. 34. 1-14.
  14. Khokhlov, A., Pilipenko, V., Krasnoperov, R., Nikolova, Yu & Dobrovolsky, M. (2020). Geomagnetic Field Variability Analysis Based on Polar Diagrams. Izvestiya, Physics of the Solid Earth. 56. 854-863. https://doi.org/10.1134/S1069351320060038
  15. Nazemi, K., Burkhardt, D., Hoppe, D., Nazemi, M., & Kohlhammer, J. (2015). Web-based Evaluation of Information Visualization. Procedia Manufacturing, 3, 5527-5534. https://doi.org/10.1016/j.promfg.2015.07.718
  16. Pasichnyk V., Tabachyshyn D., Kunanets N., & Rzheuskyi A. (2020). Visualization of Expert Evaluations of the Smartness of Sociopolises with the Help of Radar Charts. Advances in Intelligent Systems and Computing (AISC), 938, 2019, 126-141. https://doi.org/10.1007/978-3-030-16621-2_12
  17. Rodrigues, A.M., Barbosa, G.D., Lopes, H.C., & Barbosa, S.D. (2019). Comparing the Effectiveness of Visualizations of Different Data Distributions. 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 84-91. https://doi.org/10.1109/SIBGRAPI.2019.00020
  18. Saket, B., Endert, A., & Demiralp, Ç. (2019). Task-Based Effectiveness of Basic Visualizations. IEEE Transactions on Visualization and Computer Graphics, 25, 2505-2512. https://doi.org/10.1109/TVCG.2018.2829750
  19. Sandnes, F. (2012). On the Truthfulness of Petal Graphs for Visualisation of Data. Norsk Informatik konferanse. Trondheim: Tapir akademiske forlag.
  20. Steichen, B., & Fu, B. (2019). Towards Adaptive Information Visualization - A Study of Information Visualization Aids and the Role of User Cognitive Style. Frontiers in artificial intelligence, 2(22). https://doi.org/10.3389/frai.2019.00022
  21. Toker D., Conati C., Carenini G., & Haraty M. (2012). Towards adaptive information visualization: on the influence of user characteristics, UMAP 2012, 274-285. https://doi.org/10.1007/978-3-642-31454-4_23
  22. Waldner, M., Diehl, A., Gračanin, D., Splechtna, R., Delrieux, C., & Matković, K. (2020). A Comparison of Radial and Linear Charts for Visualizing Daily Patterns. IEEE Transactions on Visualization and Computer Graphics, 26, 1033-1042. 10.1109/TVCG.2019.2934784
  23. Xiong, C., Setlur, V., Bach, B., Lin, K., Koh, E., & Franconeri, S.L. (2022). Visual Arrangements of Bar Charts Influence Comparisons in Viewer Takeaways. IEEE Transactions on Visualization and Computer Graphics, 28, 955-965. https://doi.org/10.1109/TVCG.2021.3114823
  24. Ziatdinov, Rushan. (2018). Visualization in Basic Science and Engineering Education: Call for Manuscripts for a Special Issue. European Journal of Contemporary Education. 7. https://doi.org/10.13187/ejced.2018.1.4
  25. Ziatdinov, Rushan & Valles Jr, James. (2022). Synthesis of Modeling, Visualization, and Programming in GeoGebra as an Effective Approach for Teaching and Learning STEM Topics. Mathematics. 10. 398. https://doi.org/10.3390/math10030398
  26. Botsula, M. P., & Morhun, I. A. (2010). Method of producing integrated assessment of web-content quality applying the system of polar coordinates. Visnyk of Vinnytsia Politechnical Institute, (1), 84-88
  27. Hrytsiuk, Yu. I., & Dalyavskyy, V. S. (2018). Using Petal Diagram for Visualizing the Results of Expert Evaluation of Software Quality. Scientific Bulletin of UNFU, 28(9), 95-104. https://doi.org/10.15421/40280919
  28. Romanenkov, Yu.A., Vartanyan, VM, Pronchakov, Yu.L., & Zeiniev, T.G. (2016). Means of infographic analysis of aggregate indicators of multidimensional objects and systems. Modeling in economics, organization of production and project management. Information processing systems, 8(145), 157-165.
  29. Kharchenko, VS, Tarasyuk OM, Volkova, AV, & Bely Yu. A. (2005). Application of dynamic radial metric diagrams for managing multi-version software projects. Electronic and computer systems. 2. 63-68.
  30. Yunchyk V., Fedonuyk A. (2019). Comparative Characteristics of the Functional Possibilities of the Computer Mathematics Systems in the Process for Solving Tasks Journal of Lviv Polytechnic National University "Information Systems and Networks" 6. 90-102. https://doi.org/10.23939/sisn2019.02.090