Деревинно-полімерний композит на основі стирену і тріетокси(вінілфенетил)силану

2023;
: cc. 35 - 44
1
1 Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
2
Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
3
Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
4
1 Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
5
Department of Macromolecular Chemistry, Ivane Javakhishvili University, Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili University
6
Ivane Javakhishvili’ Tbilisi State University, Department of Macromolecular Chemistry, Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University
7
Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University

Сьогодні отримання екологічно чистих деревинних композиційних матеріалів є одним із головних завдань. Карбамідо-, феноло- і меламіноформальдегідні смоли, які використовують сьогодні, шкідливі для організму людини і мають тривалу дію. Тому заміна цих та інших смол безпечними в’яжучими речовинами є однією з головних проблем. Метою цієї роботи було отримання та дослідження екологічно безпечних деревинно-полімерних композитів (декінгів) на основі нової екологічно безпечної в'яжучої речовини, посилюючого агенту тріетокси(вінілфенетил)силану та стирену (in-situ полімеризація) з наповнювачем із соснової тирси та гідроксидом алюмінію як антиоксидантом. На основі тріетокси (вінілфенетил)силану, стирену та тирси методом гарячого пресування за різних температур і співвідношень використовуваних компонентів у присутності антиоксиданту отримано деревинно-полімерні композити – декінги. Виконано морфологічне дослідження поверхні декінгів за допомогою оптичної мікроскопії, сканувальної електронної мікроскопії (СЕМ) та енергодисперсійного рентгенівського мікроаналізу. Визначено водопоглинання, температуру розм'якшення за Віка, міцність на згин і ударну в'язкість. Крім того, з використанням тирси як імпрегнувального та армувального агента та гідроксиду алюмінію як антиоксиданту отримано деревинно-полімерні композити (ДПК) методом гарячого пресування за різних температур. Морфологічне дослідження поверхні отриманих композитів здійснювали методами оптичної мікроскопії та сканувальної електронної мікроскопії, енергодисперсійного рентгенівського мікроаналізу. Водопоглинання композитів, межу текучості за вигину, ударну в’язкість і температуру розм’якшення визначали за методом Віка. Отримані композити характеризуються вищими фізико-механічними властивостями та водопоглинанням.

  1. Morrell, J.J. Wood-Based Building Components: What Have We Learned? Int. Biodeterior. Biodegradation 2002, 49, 253-258. https://doi.org/10.1016/S0964-8305(02)00052-5
  2. Hristov, V.N.; Lach, R.; Grellmann, W. Impact Fracture Behavior of Modified Polypropylene/Wood Fiber Composites. Polym. Test. 2004, 23, 581-589. https://doi.org/10.1016/j.polymertesting.2003.10.011
  3. Nygard, P.; Tanem, B.S.; Karlsen, T.; Brachet, P.; Leinsvang, B. Extrusion-Based Wood Fibre-PP Composites: Wood Powder and Pelletized Wood Fibres - A Comparative Study. Compos. Sci. Technol. 2008, 68, 3418-3424. https://doi.org/10.1016/j.compscitech.2008.09.029
  4. Colom, X.; Carrasco, F.; Pagès, P.; Cañavate, J. Effect of Different Treatments on the Interface of HDPE/Lignocellulosic Fiber Composites. Compos. Sci. Technol. 2003, 63, 161-169. https://doi.org/10.1016/S0266-3538(02)00248-8
  5. Iulianelli, G.; Tavares, M.B.; Luetkmeyer, L. Water Absorption Behavior and Impact Strength of PVC/Wood Flour Composites. Chem. Chem. Technol. 2010, 4, 225-229. https://doi.org/10.23939/chcht04.03.225
  6. Park, J.T.; Seo, J.A.; Ahn, S.H.; Kim, J.H.; Kang, S.W. Surface Modification of Silica Nanoparticles with Hydrophilic Polymers. J. Ind. Eng. Chem. 2010, 16, 517-522. https://doi.org/10.1016/j.jiec.2010.03.030
  7. Sun, X.L.; Fan, Z.P.; Zhang, L.D.; Wang, L.; Wei, Z.J.; Wang, X.Q.; Liu, W.L. Superhydrophobicity of Silica Nanoparticles Modified with Polystyrene. Appl. Surf. Sci. 2011, 257, 2308-2312. https://doi.org/10.1016/j.apsusc.2010.09.094
  8. Hou, W.; Wang, Q. Wetting Behavior of a SiO2-Polystyrene Nanocomposite Surface. J. Colloid Interface Sci. 2007, 316, 206-209. https://doi.org/10.1016/j.jcis.2007.07.033
  9. Tianbin, W.; Yangchuan, K. Preparation of Silica-PS Composite Particles and their Application in PET. Eur. Polym. J. 2006, 42, 274-285. https://doi.org/10.1016/j.eurpolymj.2005.08.002
  10. Morales, G.; van Grieken, R.; Martín, A.; Martínez, F. Sulfonated Polystyrene-Modified Mesoporous Organosilicas for Acid-Catalyzed Processes. Chem. Eng. J. 2010, 161, 388-396. https://doi.org/10.1016/j.cej.2010.01.035
  11. Dey, P.; Rajora, V.K.; Jassal, M.; Agrawal, A.K. A Novel Route for Synthesis of Temperature Responsive Nanoparticles. J. Appl. Polym. Sci. 2011, 120, 335-344. https://doi.org/10.1002/app.33133
  12. Liu, P.; Su, Z. Preparation of Polystyrene Grafted Silica Nanoparticles by Two-Steps UV Induced Reaction. J. Photochem. Photobiol. A. 2004, 167, 237-240. https://doi.org/10.1016/j.jphotochem.2004.05.030
  13. Pérez, L.D.; López, J.F.; Orozco, V.H.; Kyu, T.; López, B.L. Effect of the Chemical Characteristics of Mesoporous Silica MCM‐41 on Morphological, Thermal, and Rheological Properties of Composites Based on Polystyrene. J. Appl. Polym. Sci. 2009, 111, 2229-2237. https://doi.org/10.1002/app.29245
  14. Maas, J.H.; Cohen Stuart, M.A.; Sieval, A.B.; Zuilhof, H.; Sudhölter, E.J.R. Preparation of Polystyrene Brushes by Reaction of Terminal Vinyl Groups on Silicon and Silica Surfaces. Thin Solid Films 2003, 426, 135-139. https://doi.org/10.1016/S0040-6090(03)00033-6
  15. Liu, P.; Liu, W.M.; Xue, Q.J. In Situ Radical Transfer Addition Polymerization of Styrene from Silica Nanoparticles. Eur. Polym. J. 2004, 40, 267-271. https://doi.org/10.1016/j.eurpolymj.2003.10.003
  16. Chevigny, C.; Gigmes, D.; Bertin, D.; Jestin, J.; Boue, F. Polystyrene Grafting from Silica Nanoparticles via Nitroxide-Mediated Polymerization (NMP): Synthesis and SANS Analysis with the Contrast Variation Method. Soft Matter. 2009, 5, 3741-3753. https://doi.org/10.1039/B906754J
  17. Laruelle, G.; Parvole, J.; Francois, J.; Billon, L. Block Сopolymer Rafted-Silica Particles: A Core/Double Shell Hybrid Inorganic/Organic Material. Polymer 2004, 45, 5013-5020. https://doi.org/10.1016/j.polymer.2004.05.030
  18. Liu, C.-H.; Pan, C.-Y. Grafting Polystyrene onto Silica Nanoparticles via RAFT Polymerization. Polymer 2007, 48, 3679-3685. https://doi.org/10.1016/j.polymer.2007.04.055
  19. Wang, Y.-P.; Pei, X.-W.; He, X.-Y.; Yuan, K. Synthesis Of Well-Defined, Polymer-Grafted Silica Nanoparticles via Reverse ATRP. Eur. Polym. J. 2005, 41, 1326-1332. https://doi.org/10.1016/j.eurpolymj.2004.12.010
  20. Bratychak, M.; Bratychak, M. Jr.; Brostow, W.; Shyshchak, O. Synthesis and Properties of Peroxy Derivatives of Epoxy Resins Based on Bisphenol A: Effects of the Presence of Boron Trifluoride Etherate. Mater. Res. Innov. 2002, 6, 24-30. https://doi.org/10.1007/s10019-002-0157-7
  21. Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073
  22. Hubner, E.; Allgaier, J.; Meyer, M.; Stellbrink, J.; Pyckhout-Hintzen, W.; Richter, D. Synthesis of Polymer/Silica Hybrid Nanoparticles Using Anionic Polymerization Techniques. Macromolecules 2009, 43, 856-867. https://doi.org/10.1021/ma902213p
  23. Nguyen, M.N.; Bressy, C.; Margaillan, A. Synthesis of Novel Random and Block Copolymers of tert-Butyldimethylsilyl Methacrylate and Methyl Methacrylate by RAFT Polymerization. Polymer 2009, 50, 3086-3094. https://doi.org/10.1016/j.polymer.2009.04.075
  24. Agudelo, N.A.; Perez, L.D.; Lopez. B.L. A Novel Method for the Synthesis of Polystyrene-Graft-Silica Particles Using Random Copolymers Based on Styrene and Triethoxyvinylsilane. Appl. Surf. Sci. 2011, 257, 8581-8586. https://doi.org/10.1016/j.apsusc.2011.05.021
  25. Kvinikadze, N.; Londaridze, L; Zedgenidze, A.; Dzidziguri, D.; Mukbaniani, O. Wood Polymer Composites on the Basis of New Coupling Agent. Abstracts of Communications of 7th International Caucasian Symposium on Polymers & Advanced Materials, Tbilisi, Georgia, 2021, 27-30 July, p. 60. https://icsp7.tsu.ge/data/file_db/icsp7/abstracts_21.07icsp7.pdf
  26. Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. Ph.D. Thesis, Akron University, USA, 2016.
  27. Essential Testing of Flexural Properties of Plastics and Polymers. ISO 178, 2019.
  28. Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech. 2015, 5, 33-41. https://doi.org/10.4236/wjm.2015.53004
  29. Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani. O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201-209. https://doi.org/10.23939/chcht11.02.201
  30. Aneli, J.; Mukbaniani, O.; Markarashvili, E.; Zaikov, G.; Klodzinska, E. Polymer Composites on the Basis of Epoxy Resin with Mineral Fillers Modified by Tetraetoxysilane. Chem. Chem. Technol. 2013, 67, 141-145. https://doi.org/10.23939/chcht07.02.141
  31. Mukbaniani, O.; Brostow, W.; Hagg Lobland, H.E.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Dzidziguri, D.; Buzaladze, G. Composites Containing Bamboo with Different Binders. Pure Appl. Chem. 2018, 90, 1001-1009. https://www.degruyter.com/ document/doi/10.1515/pac-2017-0804/html
  32. Mukbaniani, O.; Brostow, W.; Aneli, J.; Markarashvili, E. Tatrishvili, T.; Buzaladze, G.; Parulava, G. Sawdust Based Composites. Polym. Adv. Technol. 2020, 31, 2504-2511. https://doi.org/10.1002/pat.4965
  33. Fernández-Jiménez, A.; Palomo. A. Mid-Infrared Spectroscopic Studies of Alkali-Activated Fly Ash Structure. Microporous Mesoporous Mater. 2005, 86, 207-214. https://doi.org/10.1016/j.micromeso.2005.05.057
  34. Mukherjee, S.; Srivastava, S.K. Minerals Transformations in Northeastern Region Coals of India on Heat Treatment. Energy Fuels 2006, 20, 1089-1096. https://doi.org/10.1021/ef050155y
  35. Kalogeras, I.M.; Hagg Lobland, H.E. The Nature of the Glassy State: Structure and Transitions. J. Mater. Ed. 2012, 34, 69-94.