Дослідження властивостей, антиоксидантна актив-ність та in silico молекулярний докінг хітозану з відходів черепашок равлика за допомогою ультразвукової методикии

: cc. 126 - 132
Doctoral student of Biology, Faculty of Mathematic and Natural Sciences, University of Brawijaya, Department of Pharmacy, Diploma III Pharmacy, Academy Pharmacy of Surabaya
Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya
Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Essential Oil's Institute, University of BrawijayaUniversity of Brawijaya,

Равлики поширені в Індонезії, особливо в Кедірі, але черепашки равлика не мають комерційної цінності. У цій роботі описано характеристику й in vitro оцінку біоактивності хітозану з відходів черепашок равликів (хітозан-SSW), отриманого за допомогою ультразвукової методики, та проаналізовано потенціал хітозану як інгібітора рецепторів вільних радикалів за допомогою методу молекулярного докінгу in silico. Мета дослідження властивостей хітозану-SSW – аналіз вмісту води, білка та функціональних груп, а також молекулярної маси, розміру частинок, морфології, оцінки антиоксидантної активностімолекулярного докінгу in silico. Встановлено, що хітозан-SSW, отриманий за допомогою ультразвукової обробки, мав високий ступінь деацетилювання (DD) і високу молекулярну масу (MW). Встановлено характеристики хітозану-SSW: вміст води 0,43 %, вміст білка 1,59 %, молекулярна маса 2198 кДа, значення ступеня деацетилювання 79,50 %. Важливо, що хітозан-SSW мав високу антиоксидантну активність для потенційного зменшення вільних радикалів DPPH зі значенням IC50 2,44мкг/мл. Передбачається, що хітозан має потенціал як інгібітор ліпоксигенази, CYP2C9 і NADPH-оксидази

  1. Bedoić, R.; Ćosić, B.; Duić, N. Technical Potential and Geographic Distribution of Agricultural Residues, Co-Products and By-Products in the European Union. Sci. Total Environ. 2018, 686, 568-579. https://doi.org/10.1016/j.scitotenv.2019.05.219
  2. Vanitha, C.; Kuppusamy, M.R.; Sridhar, T.M.; Sureshkumar, R.; Mahalakshmi, N. Synthesis Characterization of Nano-Hydroxy Apatite From White Snail Shells and Removal of Methylene Blue. Int. J. Innov. Res. Adv. Eng. 2017, 4, 2014-2018.
  3. Oyekunle, D.T; Omoleye, J. A. Effect of Particle Sizes on the Kinetics of Demineralization of Snail Shell for Chitin Synthesis Using Acetic Acid. Heliyon 2019, 5, 1-7. https://doi.org/10.1016/j.heliyon.2019.e02828
  4. Oyekunle, D.T; Omoleye, J. Extraction, Characterization and Kinetics of Demineralised of Chitin Produced From Snail Shells of Different Particle Sizes Using 1.2M HCL. Int. J. Mech. Eng. Technol. 2019, 10, 2010-2020.
  5. Xu, R.; Mao, J.; Penh, N.; Luo, X.; Chang, C. Chitin/clay Microspheres with Hierarchical Architecture for Highly Efficient Removal of Organic Dyes. Carbohydr. Polym. 2018, 188, 143-150. https://doi.org/10.1016/j.carbpol.2018.01.073
  6. Popadyuk, N.; Zholobko, O.; Donchak, V.; Harhay, K.; Budishevska, O.; Voronov, A.; Kohut, A.; Voronov, S. Ionically and Covalently Crosslinked Hydrogel Particles Based on Chitosan and Poly (ethylene glycol). Chem. Chem. Technol. 2014, 8, 171-176. https://doi.org/10.23939/chcht08.02.171
  7. Bazunova, M.; Sharafutdinova, L.; Bazunova, A.; Lazdin, R.; Elinson, M.; Kulish, E. Biocompatible Gel-like Forms of Drugs on the Basis of Solutions of Polysaccharide Chitosan with Alcohols. Chem. Chem. Technol. 2018, 12, 43-46. https://doi.org/10.23939/chcht12.01.043
  8. Neha, K.; Anitha, R.; Subashini, R.; Natarajan, A.; Sridha. T. M. Synthesis and Characterization of Chitosan/Potato Peel Powder-Based Hydrogel and its in vitro Antimicrobial Activity. J. Appl. Pharm. Sci. 2019, 9, 66-71. https://doi.org/10.7324/JAPS.2019.90909
  9. Solomko, N.; Budishevska, O.; Voronov, S. Peroxide Chitosan Derivatives and their Application. Chem. Chem. Technol. 2007, 1, 137-147. https://doi.org/10.23939/chcht01.03.137
  10. Umarudin; Rahayu, S.; Warsito.; Widyarti, S. Molecular Characterization, Antioxidant, And Toxicity Activity Of Chitosan Isolated From Lissahatina Fulica Shell Waste Using Hot Plate Magnetic Stirrer Technique. Rasayan J. Chem. 2022, 15, 2299-2303. http://doi.org/10.31788/RJC.2022.1547050
  11. Umarudin; Widyarti, S.; Warsito; Rahayu, S. Effect of Lissachatina Fulica Chitosan on the Antioxidant and Lipid Profile of Hypercholesterolemic Male Wistar Rats. J. Pharm. Pharmacogn. Res. 2022, 10, 995-1005. https://doi.org/10.56499/jppres22.1468_10.6.995
  12. Sharma, K.; Somavarapu, S.; Colombani, A.; Govind, N.; Taylor, K. M.G. Crosslinked Chitosan Nanoparticle Formulations for Delivery from Pressurized Metered Dose Inhalers. Eur. J. Pharm. Biopharm. 2012, 81, 74-81. https://doi.org/10.1016/j.ejpb.2011.12.014
  13. Carocho, M; Ferreira, I.C.F.R. A review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013, 51, 15-25. https://doi.org/10.1016/j.fct.2012.09.021
  14. Kancheva, V. D. Phenolic Antioxidants-Radical-Scavenging and Chain-Breaking Activity: A Comparative Study. Eur. J. Lipid Sci. Technol. 2009, 111, 1072-1089. https://doi.org/10.1002/ejlt.200900005
  15. Yuliana, A.; Pradeckta, L.S.; Savitri, E.; Handaratri, A.R.; Sumarno. The Effect of Sonication on the Characteristic of Chitosan. Proceeding of International Conference on Chemical and Material Engineering 2012, 1-5.
  16. Albu, S.; Joyce, E; Paniwnyk, L; Lorimer, J.P.; Mason, T.J. Potential for the Use of Ultrasound in the Extraction of Antioxidants from Rosmarinus Officinalis for the Food and Pharmaceutical Industry. Ultrason. Sonochem. 2004, 11, 261-265. https://doi.org/10.1016/j.ultsonch.2004.01.015
  17. Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chinese Med. 2018, 13, 20. https://doi.org/10.1186/s13020-018-0177-x
  18. AOAC. Official Methods of Analysis, 18th edn. Washington, DC: Association of Official Analytical Chemists, 2007. https://doi.org/10.1007/BF02670789
  19. Xuan Du, D.; Xuan Vuong, B. Study on Preparation of Water-Soluble Chitosan with Varying Molecular Weights and Its Antioxidant Activity. Adv. Mater. Sci. Eng. 2019, 2019, 8781013. https://doi.org/10.1155/2019/8781013
  20. Journot, C.M.A.; Nicolle, L.; Lavanchy, Y.; Gerber-Lamaire, S. Selection of Water-Soluble Chitosan by Microwave-Assisted Degradation and pH-Controlled Precipitation. Polymers 2020, 12, 1274. https://doi.org/10.3390/polym12061274
  21. Hsu, C.-Y.; Chan, Y.-P.; Chang, J. Antioxidant Activity of Extract from Polygonum cuspidatum. Biol. Res. 2007, 40, 12-21. https://doi:10.4067/S0716-97602007000100002
  22. Wafiroh, S.; Wathoniyyah, M.; Abdulloh, A.; Rahardjo, Y.; Fahmi, M. A. Application of Glutaraldehyde-Crosslinked Chitosan Membranes from Shrimp Shellwaste on Production of Biodiesel from Calophyllum Inophyllum Oil. Chem. Chem. Technol. 2017, 11, 65-70. https://doi.org/10.23939/chcht11.01.065
  23. Oyekunle, D. T; Omoleye, J. A. E. New Process for Synthesizing Chitosan from Snail Shells. J. Phys. Conf. Ser. 2019, 1299, 012089. https://doi.org/:10.1088/1742-6596/1299/1/012089
  24. [EFSA] European Food Safety Authority. Scientific Opinion on the Safety of Chitinglucan as a Novel Food Ingredient. EFSA J. 2011, 9, 2137. https://doi.org/:10.2903/j.efsa.2011.2137
  25. Ningrum, S.R.; Sinaga, S.M.; Harahap, U. Isolation of Chitosan from Cuttlefish Bones. Int. J. Sci. Technol. Manag. 2022, 3, 785-788. https://doi.org/10.46729/ijstm.v3i3.523
  26. Yuan, Y.; Wan, Z.-L.; Yin, S.-W.; Teng, Z.; Yang, X.-Q.; Qi, J.-R.; Wang, X.-Y. Formation and Dynamic Interfacial Adsorption-of Glycinin/Chitosan Soluble Complex at Acidic pH: Relationship to Mixed Emulsion Stability. Food Hydrocoll. 2013, 31, 85-93. https://doi.org/10.1016/j.foodhyd.2012.10.003
  27. Kusumaningsih, T.; Masykur, A.; Arief, U. Synthesis of hitosan from the Chitin Of Escargot (Achatina fulica). Biofarmasi Journal of Natural Product Biochemistry 2004, 2, 64-68. http://dx.doi.org/10.13057/biofar/f020204
  28. Waryani, S.W.; Silvia, R.; Hanum, F. Utilization of Chitosan from The Shells of Snail (Achatina fulica) as a Preservative of Plush Fish (Rastrelliger sp) and Catfish (Clarias batrachus). Jurnal Teknik Kimia 2014, 3, 51-57. https://doi.org/10.32734/jtk.v3i4.1656
  29. Hossain, M.S; Iqbal, A. Production and Characterization of Chitosan from Shrimp Waste. J. Bangladesh Agric. Univ. 2014, 12, 153-160. https://doi.org/10.3329/jbau.v12i1.21405
  30. Srinivasan, H.; Kanayairam, V.; Ravichandran, R. Chitin and Chitosan Preparation from Shrimp Shells Penaeus Monodon and its Human Ovarian Cancer Cell Line, PA-1. Int. J. Biol. Macromol. 2018, 107, 662-667. https://doi.org/10.1016/j.ijbiomac.2017.09.035
  31. Xuan Du, D.; Xuan Vuong, B. Study on Preparation of Water-Soluble Chitosan with Varying Molecular Weights and Its Antioxidant Activity. Adv. Mater. Sci. Eng. 2018, 1-8. https://doi.org/10.1155/2019/8781013
  32. Zhang, H.; Li, Y.; Zhang, X; Liu, B.; Zhao, H.; Chen, D. Directly Determining the Molecular Weight of Chitosan with Atomic Force Microscopy. Front Nanosci. Nanotech. 2016, 185, 57-63. https://doi.org/10.15761/FNN.1000121
  33. Lu, C.; Li, H.; Li, C.; Chen, B.; Shen, Y. Chemical Composition and Radical Scavenging Activity of Amygdalus pedunculata Pall Leaves Essential Oil. Food Chem. Toxicol. 2018, 19, 368-374. https://doi.org/10.1016/j.fct.2018.02.012
  34. Ma, Y.-L.; Zhu, D.-Y.; Thakur, K.; Wang, C.-H.; Wang, H.; Ren, Y.-F.; Zhang, J.-G.; Wei, Z.-J. Antioxidant and Antibacterial Evaluation of Polysaccharides Sequentially Extracted from Onion (Allium cepa L.). Int. J. Biol. Macromol. 2018, 111, 92-101. https://doi.org/10.1016/j.ijbiomac.2017.12.154
  35. Prakakash, P.; Neelu, G. Therapeutic Uses of Ocimum Santum Linn (Tulsi) with a Note on Eugenol and its Pharmacological Ac-tions: A Short Review. Indian J. Physiol. Pharmacol. 2005, 49, 125-131.
  36. Jafari, H.; Bernaerts, K. V.; Dodi. G.; Shavandi. A. Chitooligosaccharides for Wound Healing Biomaterials Engineer-ing. Mater. Sci. Eng. C 2020, 117, 111266. https://doi:10.1016/j.msec.2020.111266
  37. Ngo, D.-H.; Kim, S.-K. Chapter Two - Antioxidant Effects Of Chitin, Chitosan, and their Derivatives. Adv. Food Nutr. Res. 2014, 73, 15-31. https://doi:10.1016/b978-0-12-800268-1.00002-0
  38. Rahayu, S.; Prasetyawan, S.; Suprihatin, T.; Ciptadi, G. In-silico study of Marselia crenata compounds as activator Keap1/Nrf2 pathway in ovarian function. IOP Conf. Ser.: Earth Environ. Sci. 2021, 743, 012056. https://doi.org/10.1088/1755-1315/743/1/012056