У цій роботі обґрунтована некоректність алгоритму, запропонованого в публікації "M. Remer.[A Comparative Analysis of the New -3(-n) - 1 Remer Conjecture and a Proof of the 3n + 1 Collatz Conjecture. Journal of Applied Mathematics and Physics. Vol.11 No.8, August 2023"] в термінах гіпотези Коллатца. А також те, що перетворення -3(-n) - 1 не еквівалентне гіпотезі Коллатца про натуральні числа 3n + 1. Отримані результати можуть бути використані в подальших дослідженнях.
[1] M. Remer. “A Comparative Analysis of the New -3(-n) - 1 Remer Conjecture and a Proof of the 3n + 1 Collatz Conjecture”, Journal of Applied Mathematics and Physics, Vol. 11, No.8, August 2023, https://doi.org/10.4236/jamp.2023.118143
[2] J. Lagarias. “The 3x + 1 problem: An annotated bibliography II (2000–2009)”, 2012, arXiv:math/0608208.
[3] A. Grubiy. “Automaton implementations of the process of generating a Collatz sequence”, Cybernetics and Systems Analysis, 48, No. 1, 108–116 (2012), https://doi.org/10.1007/s10559-012-9380-4
[4] I. Rystsov, “Some remarks about the Collatz problem”, Cybernetics and Systems Analysis, 49, No. 3, 353–365 (2013), https://doi.org/10.1007/s10559-013-9518-z
[5] D. Xu, D. Tamir “Pseudo-random number generators based on the Collatz Conjecture”, .Int. j. inf. tecnol. (2019) 11:453–459 https://doi.org/10.1007/s41870-019-00307-9
[6] P. Kosobutskyy. “The Collatz problem as a reverse problem on a graph tree formed from Q*2^n (Q=1,3,5,7,…) Jacobsthal-type numbers” .arXiv:2306.14635v1
[7] Р. Kosobutsky, “Svitohliad 2022, №5(97) ,56-61(Ukraine). ISSN 2786-6882 (Online); ISSN 1819-7329.
[8] Р. Kosobutskyy, Comment from article «M.Ahmed, Two different scenarios when the Collatz Conjecture fails. General Letters in Mathematics. 2023» https://www.refaad.com/Journal/Article/1388, https://doi.org/10.31559/glm2022.12.4.4
[9] P. Kosobutskyy, A. Yedyharova, T. Slobodzyan. From Newtons binomial and Pascal’striangle to Collatz problem.CDS.2023; Vol. 5, Number 1: 121-127 https://doi.org/10.23939/cds2023.01.121
[10] P. Kosobutskyy, D. Rebot. Collatz Conjecture 3n±1 as a Newton Binomial Problem. CDS. 2023; Vol. 5, Number 1: 137-145, https://doi.org/10.23939/cds2023.01.137
[11] A. Horadam. 1996. Jacobsthal Representation Numbers. Fibonacci Quarterly. 34, 40–54
[12] M. Stein, S.Ulam; M.Well. (1964) American Mathematical Monthly, 71(5):516–520; M.Stein, S.Ulam. (1967) American Mathematical Monthly, 74(1):43–44, https://doi.org/10.2307/2314055
[13] P. Kosobutsky. Lviv mathematician Stanislav Ulam is the creator of the statistical modeling method or the Monte Carlo method. The world of physics. 2012, No. 4, 22-30
[14] L. Green. The Negative Collatz Sequence. (2022), v1.25:
[15] N. Sloane.The On-line encyclopedia of integer sequences. The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Available online. https://oeis.org/A002450